IDEAS home Printed from https://ideas.repec.org/f/c/pme547.html
   My authors  Follow this author

Jean-Francois Mercure

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Julien Lefevre & Thomas Le Gallic & Panagiotis Fragkos & Jean-François Mercure & Yeliz Simsek & Leonidas Paroussos, 2022. "Global socio-economic and climate change mitigation scenarios through the lens of structural change," Post-Print hal-03622209, HAL.

    Cited by:

    1. Shahbaz, Muhammad & Siddiqui, Aaliyah & Ahmad, Shabbir & Jiao, Zhilun, 2023. "Financial development as a new determinant of energy diversification: The role of natural capital and structural changes in Australia," Energy Economics, Elsevier, vol. 126(C).
    2. Liao, Hua & Ye, Huiying, 2023. "Endogenous economic structure, climate change, and the optimal abatement path," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 417-429.

  2. Gregor Semieniuk & Emanuele Campiglio & Jean-Francois Mercure & Ulrich Volz & Neil R. Edwards, 2020. "Low-carbon transition risks for finance," Working Papers 233, Department of Economics, SOAS University of London, UK.

    Cited by:

    1. Gutiérrez-López, Cristina & Castro, Paula & Tascón, María T., 2022. "How can firms' transition to a low-carbon economy affect the distance to default?," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. D'Orazio, Paola, 2022. "Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries," International Economics, Elsevier, vol. 169(C), pages 135-147.
    3. Chan, Ying Tung & Ji, Qiang & Zhang, Dayong, 2024. "Optimal monetary policy responses to carbon and green bubbles:A two-sector DSGE analysis," Energy Economics, Elsevier, vol. 130(C).
    4. David Friederich & Lynn H. Kaack & Alexandra Luccioni & Bjarne Steffen, 2021. "Automated Identification of Climate Risk Disclosures in Annual Corporate Reports," Papers 2108.01415, arXiv.org.
    5. Huang, Bihong & Punzi, Maria Teresa & Wu, Yu, 2022. "Environmental regulation and financial stability: Evidence from Chinese manufacturing firms," Journal of Banking & Finance, Elsevier, vol. 136(C).
    6. Beirne, John & Dafermos, Yannis & Kriwoluzky, Alexander & Renzhi, Nuobu & Volz, Ulrich & Wittich, Jana, 2022. "Natural Disasters and Inflation in the Euro Area," VfS Annual Conference 2022 (Basel): Big Data in Economics 264132, Verein für Socialpolitik / German Economic Association.
    7. Stefano Carattini & Garth Heutel & Givi Melkadze, 2023. "Climate Policy, Financial Frictions, and Transition Risk," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 51, pages 778-794, December.
    8. Magacho, Guilherme & Espagne, Etienne & Godin, Antoine & Mantes, Achilleas & Yilmaz, Devrim, 2023. "Macroeconomic exposure of developing economies to low-carbon transition," World Development, Elsevier, vol. 167(C).
    9. Chester, D. & Lynch, C. & Szerszynski, B. & Mercure, J.-F. & Jarvis, A., 2024. "Heterogeneous capital stocks and economic inertia in the US economy," Ecological Economics, Elsevier, vol. 217(C).
    10. Gianni Guastella & Stefano Pareglio & Caterina Schiavoni, 2023. "An Empirical Approach to Integrating Climate Reputational Risk in Long-Term Scenario Analysis," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    11. Wu, Xin & Bai, Xiao & Qi, Hanying & Lu, Lanxin & Yang, Mingyuan & Taghizadeh-Hesary, Farhad, 2023. "The impact of climate change on banking systemic risk," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 419-437.
    12. John Beirne & Yannis Dafermos & Alexander Kriwoluzky & Nuobu Renzhi & Ulrich Volz & Jana Wittich, 2021. "The Effects of Natural Disasters on Price Stability in the Euro Area," Working Papers 244, Department of Economics, SOAS University of London, UK.
    13. Birindelli, Giuliana & Miazza, Aline & Paimanova, Viktoriia & Palea, Vera, 2023. "Just “blah blah blah”? Stock market expectations and reactions to COP26," International Review of Financial Analysis, Elsevier, vol. 88(C).
    14. Ren, Yi-Shuai & Boubaker, Sabri & Liu, Pei-Zhi & Weber, Olaf, 2023. "How does carbon regulatory policy affect debt financing costs? Empirical evidence from China," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 77-90.
    15. Chen, Jingyuan & Calabrese, Raffaella & Cowling, Marc, 2024. "Does energy efficiency of UK SMEs affect their access to finance?," Energy Economics, Elsevier, vol. 129(C).
    16. Naef Alain, 2023. "The Impossible Love of Fossil Fuel Companies for Carbon Taxes," Working papers 923, Banque de France.
    17. Dunz, Nepomuk & Hrast Essenfelder, Arthur & Mazzocchetti, Andrea & Monasterolo, Irene & Raberto, Marco, 2023. "Compounding COVID-19 and climate risks: The interplay of banks’ lending and government’s policy in the shock recovery," Journal of Banking & Finance, Elsevier, vol. 152(C).
    18. Chen, Deyang & Zeng, Zheyu & Chen, Yunyue, 2024. "Heterogeneous impacts of multiple climate policies on the chinese stock market," Finance Research Letters, Elsevier, vol. 60(C).
    19. Ricardo Crisostomo, 2022. "Measuring Transition Risk in Investment Funds," Papers 2210.15329, arXiv.org, revised Dec 2022.
    20. Olk, Christopher & Schneider, Colleen & Hickel, Jason, 2023. "How to pay for saving the world: Modern Monetary Theory for a degrowth transition," LSE Research Online Documents on Economics 120343, London School of Economics and Political Science, LSE Library.
    21. Julia Anna Bingler & Chiara Colesanti Senni, 2020. "Taming the Green Swan: How to improve climate-related financial risk assessments," CER-ETH Economics working paper series 20/340, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    22. Hoffart, Franziska M. & D'Orazio, Paola & Holz, Franziska & Kemfert, Claudia, 2024. "Exploring the interdependence of climate, finance, energy, and geopolitics: A conceptual framework for systemic risks amidst multiple crises," Applied Energy, Elsevier, vol. 361(C).
    23. Zhang, Dayong & Wu, Yalin & Ji, Qiang & Guo, Kun & Lucey, Brian, 2024. "Climate impacts on the loan quality of Chinese regional commercial banks," Journal of International Money and Finance, Elsevier, vol. 140(C).
    24. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    25. Guo, Kun & Liu, Fengqi & Sun, Xiaolei & Zhang, Dayong & Ji, Qiang, 2023. "Predicting natural gas futures’ volatility using climate risks," Finance Research Letters, Elsevier, vol. 55(PA).
    26. Hansen, T.A., 2022. "Stranded assets and reduced profits: Analyzing the economic underpinnings of the fossil fuel industry's resistance to climate stabilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    27. Cepni, Oguzhan & Şensoy, Ahmet & Yılmaz, Muhammed Hasan, 2024. "Climate change exposure and cost of equity," Energy Economics, Elsevier, vol. 130(C).
    28. Mengting Fan & Zan Mo & Huijian Fu & Tsung-Hsien Wu & Zili Chen & Yue He, 2024. "Does climate policy uncertainty matter for bank value?," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-28, April.

  3. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

    Cited by:

  4. J-F Mercure & H. Pollitt & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & A. Lam & F. Knobloch & J. Vinuales, 2017. "Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE," Papers 1707.04870, arXiv.org, revised Jan 2018.

    Cited by:

    1. Pim Vercoulen & Soocheol Lee & Xu Han & Wendan Zhang & Yongsung Cho & Jun Pang, 2023. "Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel," Energies, MDPI, vol. 16(11), pages 1-24, June.
    2. Léo Coppens & Simon Dietz & Frank Venmans, 2024. "Optimal Climate Policy under Exogenous and Endogenous Technical Change: Making Sense of the Different Approaches," CESifo Working Paper Series 11059, CESifo.
    3. Mitchell K. van der Hulst & Mark A. J. Huijbregts & Niels van Loon & Mirjam Theelen & Lucinda Kootstra & Joseph D. Bergesen & Mara Hauck, 2020. "A systematic approach to assess the environmental impact of emerging technologies: A case study for the GHG footprint of CIGS solar photovoltaic laminate," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1234-1249, December.
    4. Qiu, Yueming (Lucy) & Wang, Yi David & Xing, Bo, 2021. "Grid impact of non-residential distributed solar energy and reduced air emissions: Empirical evidence from individual-consumer-level smart meter data," Applied Energy, Elsevier, vol. 290(C).
    5. Lackner, Teresa & Fierro, Luca Eduardo & Mellacher, Patrick, 2024. "Opinion Dynamics meet Agent-based Climate Economics: An Integrated Analysis of Carbon Taxation," OSF Preprints rdfze, Center for Open Science.
    6. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    7. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    9. Dafermos, Yannis & Nikolaidi, Maria, 2022. "Assessing climate policies: an ecological stock–flow consistent perspective," Greenwich Papers in Political Economy 38039, University of Greenwich, Greenwich Political Economy Research Centre.
    10. Shangram Bahadur Shah & Jirakiattikul Sopin & Kua-Anan Techato & Bibek Kumar Mudbhari, 2023. "A Systematic Review on Nexus Between Green Finance and Climate Change: Evidence from China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 599-613, July.
    11. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    12. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    13. Coppens, Léo & Dietz, Simon & Venmans, Frank, 2024. "Optimal climate policy under exogenous and endogenous technical change: making sense of the different approaches," LSE Research Online Documents on Economics 124548, London School of Economics and Political Science, LSE Library.
    14. Yuli Shan & Jiamin Ou & Daoping Wang & Zhao Zeng & Shaohui Zhang & Dabo Guan & Klaus Hubacek, 2021. "Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement," Nature Climate Change, Nature, vol. 11(3), pages 200-206, March.
    15. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    16. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    17. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    18. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
    19. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    21. Julia Anna Bingler & Chiara Colesanti Senni, 2020. "Taming the Green Swan: How to improve climate-related financial risk assessments," CER-ETH Economics working paper series 20/340, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    22. Alexandri, Eva & Antón, José-Ignacio & Lewney, Richard, 2024. "The impact of climate change mitigation policies on European labour markets," Ecological Economics, Elsevier, vol. 216(C).
    23. Jing Wu & Jean-Claude Thill, 2018. "Climate change coalition formation and equilibrium strategies in mitigation games in the post-Kyoto Era," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(4), pages 573-598, August.
    24. Kirsten Svenja Wiebe & Eivind Lekve Bjelle & Johannes Többen & Richard Wood, 2018. "Implementing exogenous scenarios in a global MRIO model for the estimation of future environmental footprints," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-18, December.
    25. Leimbach, Marian & Hübler, Michael & Mahlkow, Hendrik & Montrone, Lorenzo & Bukin, Eduard & Felbermayr, Gabriel & Kalkuhl, Matthias & Koch, Johannes & Marcolino, Marcos & Pothen, Frank & Steckel, Jan , 2024. "Macroeconomic structural change likely increases inequality in India more than climate policy," Open Access Publications from Kiel Institute for the World Economy 302045, Kiel Institute for the World Economy (IfW Kiel).

  5. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.

    Cited by:

    1. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    2. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    3. Stéphane Poncin, 2018. "Energy policy tools in Luxembourg - Assessing their impact on households’ space heating energy consumption and CO2 emissions by means of the LuxHEI model," DEM Discussion Paper Series 18-23, Department of Economics at the University of Luxembourg.

  6. Jean-Francois Mercure, 2016. "Fashion, fads and the popularity of choices: micro-foundations for diffusion consumer theory," Papers 1607.04155, arXiv.org, revised May 2018.

    Cited by:

    1. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    2. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.
    3. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    4. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.

  7. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.

    Cited by:

    1. Grubb, M. & Mercure, J. & Salas, P. & Lange, R., 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Cambridge Working Papers in Economics 1819, Faculty of Economics, University of Cambridge.
    2. Frank W. Geels & Jonatan Pinkse & Dimitri Zenghelis, 2021. "Productivity opportunities and risks in a transformative,low-carbon and digital age," Working Papers 009, The Productivity Institute.
    3. Mehdi Bensouda & Mimoun Benali, 2023. "From Fairly Good to Optimal Energy Efficiency Practices within the Moroccan Manufacturing Sector: Are Financial Resources Sufficient?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 478-488, May.
    4. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    5. Cahen-Fourot, Louison & Campiglio, Emanuele & Daumas, Louis & Miess, Michael Gregor & Yardley, Andrew, 2023. "Stranding ahoy? Heterogeneous transition beliefs and capital investment choices," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 535-567.
    6. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    7. Roberts, Ruby & Flin, Rhona & Millar, David & Corradi, Luca, 2021. "Psychological factors influencing technology adoption: A case study from the oil and gas industry," Technovation, Elsevier, vol. 102(C).
    8. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    9. Busra Agan & Mehmet Balcilar, 2022. "On the Determinants of Green Technology Diffusion: An Empirical Analysis of Economic, Social, Political, and Environmental Factors," Sustainability, MDPI, vol. 14(4), pages 1-23, February.
    10. J-F Mercure & H. Pollitt & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & A. Lam & F. Knobloch & J. Vinuales, 2017. "Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE," Papers 1707.04870, arXiv.org, revised Jan 2018.

  8. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.

    Cited by:

    1. Grubb, M. & Mercure, J. & Salas, P. & Lange, R., 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Cambridge Working Papers in Economics 1819, Faculty of Economics, University of Cambridge.
    2. Tomas Balint & Francesco Lamperti & Antoine Mandel & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2016. "Complexity and the Economics of Climate Change: a Survey and a Look Forward," SciencePo Working papers Main halshs-01390694, HAL.
    3. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni & Tania Treibich, 2021. "Three green financial policies to address climate risks," Post-Print hal-04103920, HAL.
    4. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Post-Print hal-04420572, HAL.
    5. Alina Evelyn Badillo-Márquez & Alberto Alfonso Aguilar-Lasserre & Marco Augusto Miranda-Ackerman & Oscar Osvaldo Sandoval-González & Daniel Villanueva-Vásquez & Rubén Posada-Gómez, 2021. "An Agent-Based Model-Driven Decision Support System for Assessment of Agricultural Vulnerability of Sugarcane Facing Climatic Change," Mathematics, MDPI, vol. 9(23), pages 1-32, November.
    6. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    7. Cahen-Fourot, Louison & Campiglio, Emanuele & Daumas, Louis & Miess, Michael Gregor & Yardley, Andrew, 2023. "Stranding ahoy? Heterogeneous transition beliefs and capital investment choices," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 535-567.
    8. Julieth Stefany Garcia & Laura Milena Cárdenas & Jose Daniel Morcillo & Carlos Jaime Franco, 2024. "Policy Assessment for Energy Transition to Zero- and Low-Emission Technologies in Pickup Trucks: Evidence from Mexico," Energies, MDPI, vol. 17(10), pages 1-27, May.
    9. Monasterolo, Irene & Raberto, Marco, 2018. "The EIRIN Flow-of-funds Behavioural Model of Green Fiscal Policies and Green Sovereign Bonds," Ecological Economics, Elsevier, vol. 144(C), pages 228-243.
    10. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    11. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," SciencePo Working papers Main hal-04096135, HAL.
    12. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    13. Darren Nel & Araz Taeihagh, 2024. "The soft underbelly of complexity science adoption in policymaking: towards addressing frequently overlooked non-technical challenges," Policy Sciences, Springer;Society of Policy Sciences, vol. 57(2), pages 403-436, June.
    14. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    15. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    16. Alessandro Taberna & Tatiana Filatova & Andrea Roventini & Francesco Lamperti, 2021. "Coping with increasing tides: technological change, agglomeration dynamics and climate hazards in an agent-based evolutionary model," LEM Papers Series 2021/44, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. David G. Green, 2023. "Emergence in complex networks of simple agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 419-462, July.
    18. G. Dosi & F. Lamperti & Mauro Napoletano & A. Roventini & A. Sapio, 2020. "Climate change and green transitions in an agent-based integrated assessment model," SciencePo Working papers Main halshs-03046932, HAL.
    19. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    20. Liu, Shan & Yan, Jie & Yan, Yamin & Zhang, Haoran & Zhang, Jing & Liu, Yongqian & Han, Shuang, 2024. "Joint operation of mobile battery, power system, and transportation system for improving the renewable energy penetration rate," Applied Energy, Elsevier, vol. 357(C).
    21. Parakram Pyakurel, 2021. "Green growth or degrowth? Evaluating the potential of technology for sustainability," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 21-36.
    22. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    23. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    24. Derbyshire, James, 2024. "Integrating modelling-based and stakeholder-focused scenario approaches to close the planning gap and accelerate low-carbon transitions," Ecological Economics, Elsevier, vol. 221(C).
    25. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    26. Monasterolo, Irene & Roventini, Andrea & Foxon, Tim J., 2019. "Uncertainty of climate policies and implications for economics and finance: An evolutionary economics approach," Ecological Economics, Elsevier, vol. 163(C), pages 177-182.
    27. Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020. "Carbon pricing and the elasticity of CO2 emissions," Working Papers EPRG2035, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    28. Li, Pei-Hao & Barazza, Elsa & Strachan, Neil, 2022. "The influences of non-optimal investments on the scale-up of smart local energy systems in the UK electricity market," Energy Policy, Elsevier, vol. 170(C).
    29. Moya, Diego & Budinis, Sara & Giarola, Sara & Hawkes, Adam, 2020. "Agent-based scenarios comparison for assessing fuel-switching investment in long-term energy transitions of the India’s industry sector," Applied Energy, Elsevier, vol. 274(C).
    30. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.
    31. Hussain, Syed Asad & Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2023. "The perspective of energy poverty and 1st energy crisis of green transition," Energy, Elsevier, vol. 275(C).
    32. Di Domenico, Lorenzo & Raberto, Marco & Safarzynska, Karolina, 2023. "Resource scarcity, circular economy and the energy rebound: A macro-evolutionary input-output model," Energy Economics, Elsevier, vol. 128(C).
    33. Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
    34. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    35. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2023. "A consequential approach to life cycle sustainability assessment with an agent‐based model to determine the potential contribution of chemical recycling to UN Sustainable Development Goals," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 726-745, June.
    36. Arranz, Carlos F.A. & Arroyabe, Marta F. & Arranz, Nieves & de Arroyabe, Juan Carlos Fernandez, 2023. "Digitalisation dynamics in SMEs: An approach from systems dynamics and artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    37. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2021. "AgriLOVE: agriculture, land-use and technical change in an evolutionary, agent-based model," LEM Papers Series 2021/35, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    38. Naqvi, Asjad & Monasterolo, Irene, 2019. "Natural Disasters, Cascading Losses, and Economic Complexity: A Multi-layer Behavioral Network Approach," Ecological Economic Papers 24, WU Vienna University of Economics and Business.
    39. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    40. Margherita Pillan & Fiammetta Costa & Valentina Caiola, 2023. "How Could People and Communities Contribute to the Energy Transition? Conceptual Maps to Inform, Orient, and Inspire Design Actions and Education," Sustainability, MDPI, vol. 15(19), pages 1-31, October.
    41. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    42. Soocheol Lee & Unnada Chewpreecha & Hector Pollitt & Satoshi Kojima, 2018. "An economic assessment of carbon tax reform to meet Japan’s NDC target under different nuclear assumptions using the E3ME model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 411-429, April.
    43. Barazza, Elsa & Strachan, Neil, 2020. "The impact of heterogeneous market players with bounded-rationality on the electricity sector low-carbon transition," Energy Policy, Elsevier, vol. 138(C).
    44. Stolbova, Veronika & Monasterolo, Irene & Battiston, Stefano, 2018. "A Financial Macro-Network Approach to Climate Policy Evaluation," Ecological Economics, Elsevier, vol. 149(C), pages 239-253.
    45. Taberna, Alessandro & Filatova, Tatiana & Roventini, Andrea & Lamperti, Francesco, 2022. "Coping with increasing tides: Evolving agglomeration dynamics and technological change under exacerbating hazards," Ecological Economics, Elsevier, vol. 202(C).
    46. de Moura, Fernanda Senra & Barbrook-Johnson, Peter, 2022. "Using data-driven systems mapping to contextualise complexity economics insights," INET Oxford Working Papers 2022-27, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    47. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    48. Camila Gramkow & Annela Anger-Kraavi, 2019. "Developing Green: A Case for the Brazilian Manufacturing Industry," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    49. Katariina Koistinen & Satu Teerikangas, 2021. "The Debate If Agents Matter vs. the System Matters in Sustainability Transitions—A Review of the Literature," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    50. Andrew J Tanentzap, 2017. "The costs of saving nature: Does it make “cents”?," PLOS Biology, Public Library of Science, vol. 15(7), pages 1-7, July.
    51. J-F Mercure & H. Pollitt & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & A. Lam & F. Knobloch & J. Vinuales, 2017. "Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE," Papers 1707.04870, arXiv.org, revised Jan 2018.
    52. James Holehouse & Hector Pollitt, 2021. "Non-equilibrium time-dependent solution to discrete choice with social interactions," Papers 2109.09633, arXiv.org, revised Jan 2022.
    53. Ekaterina Rhodes & Kira Craig & Aaron Hoyle & Madeleine McPherson, 2021. "How Do Energy-Economy Models Compare? A Survey of Model Developers and Users in Canada," Sustainability, MDPI, vol. 13(11), pages 1-39, May.

  9. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.

    Cited by:

    1. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    2. Etienne Espagne, 2018. "Money, Finance and Climate: The Elusive Quest for a Truly Integrated Assessment Model," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(1), pages 131-143, March.
    3. Soocheol Lee & Unnada Chewpreecha & Hector Pollitt & Satoshi Kojima, 2018. "An economic assessment of carbon tax reform to meet Japan’s NDC target under different nuclear assumptions using the E3ME model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 411-429, April.
    4. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    5. Mark Meyer & Martin Hirschnitz-Garbers & Martin Distelkamp, 2018. "Contemporary Resource Policy and Decoupling Trends—Lessons Learnt from Integrated Model-Based Assessments," Sustainability, MDPI, vol. 10(6), pages 1-28, June.

  10. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Cited by:

    1. Marco Sakai & Paul E. Brockway & John R. Barrett & Peter G. Taylor, 2018. "Thermodynamic Efficiency Gains and their Role as a Key ‘Engine of Economic Growth’," Energies, MDPI, vol. 12(1), pages 1-14, December.
    2. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.

  11. J. -F. Mercure, 2013. "An age structured demographic theory of technological change," Papers 1304.3602, arXiv.org, revised Nov 2014.

    Cited by:

    1. Pim Vercoulen & Soocheol Lee & Xu Han & Wendan Zhang & Yongsung Cho & Jun Pang, 2023. "Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel," Energies, MDPI, vol. 16(11), pages 1-24, June.
    2. Grubb, M. & Mercure, J. & Salas, P. & Lange, R., 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Cambridge Working Papers in Economics 1819, Faculty of Economics, University of Cambridge.
    3. Campiglio, Emanuele & Lamperti, Francesco & Terranova, Roberta, 2024. "Believe me when I say green! Heterogeneous expectations and climate policy uncertainty," LSE Research Online Documents on Economics 124234, London School of Economics and Political Science, LSE Library.
    4. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    5. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    7. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    8. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    9. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.
    10. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    11. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    12. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    13. Jean-Francois Mercure & Pablo Salas, 2012. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Papers 1209.0708, arXiv.org, revised Jul 2013.
    14. Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    15. Katariina Koistinen & Satu Teerikangas, 2021. "The Debate If Agents Matter vs. the System Matters in Sustainability Transitions—A Review of the Literature," Sustainability, MDPI, vol. 13(5), pages 1-32, March.

  12. Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.

    Cited by:

    1. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    2. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
    3. Giovanni Aiello & Salvatore Alfonzetti & Santi Agatino Rizzo & Nunzio Salerno, 2017. "Multi-Objective Optimization of Thin-Film Silicon Solar Cells with Metallic and Dielectric Nanoparticles," Energies, MDPI, vol. 10(1), pages 1-10, January.
    4. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    5. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    6. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    7. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    8. Marc Baudry & Clément Bonnet, 2017. "Demand pull instruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1705, Chaire Economie du climat.
    9. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
    10. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    11. Bondarev, Anton & Greiner, Alfred, 2020. "Global warming and technical change: Multiple steady-states and policy options," China Economic Review, Elsevier, vol. 62(C).
    12. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    13. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    14. Marc Baudry & Clément Bonnet, 2015. "Market pull instruments and the development of wind power in Europe: a counterfactual analysis," Working Papers hal-04141408, HAL.
    15. G. Dosi & F. Lamperti & Mauro Napoletano & A. Roventini & A. Sapio, 2020. "Climate change and green transitions in an agent-based integrated assessment model," SciencePo Working papers Main halshs-03046932, HAL.
    16. Gjorgiev, Blazhe & Garrison, Jared B. & Han, Xuejiao & Landis, Florian & van Nieuwkoop, Renger & Raycheva, Elena & Schwarz, Marius & Yan, Xuqian & Demiray, Turhan & Hug, Gabriela & Sansavini, Giovanni, 2022. "Nexus-e: A platform of interfaced high-resolution models for energy-economic assessments of future electricity systems," Applied Energy, Elsevier, vol. 307(C).
    17. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    18. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    19. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    20. Ryan Rafaty & Geoffroy Dolphin & Felix Pretis, 2020. "Carbon pricing and the elasticity of CO2 emissions," Working Papers EPRG2035, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    21. Suomalainen, Kiti & Wen, Le & Sheng, Mingyue Selena & Sharp, Basil, 2022. "Climate change impact on the cost of decarbonisation in a hydro-based power system," Energy, Elsevier, vol. 246(C).
    22. Carlos Benavides & Luis Gonzales & Manuel Diaz & Rodrigo Fuentes & Gonzalo García & Rodrigo Palma-Behnke & Catalina Ravizza, 2015. "The Impact of a Carbon Tax on the Chilean Electricity Generation Sector," Energies, MDPI, vol. 8(4), pages 1-27, April.
    23. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    24. Liu, Dunnan & Zhao, Weidong & Li, Zhihao & Xu, Xiaofeng & Xiao, Bowen & Niu, Dongxiao, 2018. "Can hydropower develop as expected in China? A scenario analysis based on system dynamics model," Energy, Elsevier, vol. 161(C), pages 118-129.
    25. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    26. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    27. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.
    28. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    29. Bjarnhedinn Gudlaugsson & Dana Abi Ghanem & Huda Dawood & Gobind Pillai & Michael Short, 2022. "A Qualitative Based Causal-Loop Diagram for Understanding Policy Design Challenges for a Sustainable Transition Pathway: The Case of Tees Valley Region, UK," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    30. J. -F. Mercure, 2013. "An age structured demographic theory of technological change," Papers 1304.3602, arXiv.org, revised Nov 2014.
    31. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    32. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    33. Capasso, Marco & Hansen, Teis & Heiberg, Jonas & Klitkou, Antje & Steen, Markus, 2019. "Green growth – A synthesis of scientific findings," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 390-402.
    34. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    35. J-F Mercure & H. Pollitt & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & A. Lam & F. Knobloch & J. Vinuales, 2017. "Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE," Papers 1707.04870, arXiv.org, revised Jan 2018.
    36. Wegner, Marie-Sophie & Hall, Stephen & Hardy, Jeffrey & Workman, Mark, 2017. "Valuing energy futures; a comparative analysis of value pools across UK energy system scenarios," Applied Energy, Elsevier, vol. 206(C), pages 815-828.
    37. Nieto, Jaime & Pollitt, Hector & Brockway, Paul E. & Clements, Lucy & Sakai, Marco & Barrett, John, 2021. "Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030," Energy Policy, Elsevier, vol. 158(C).
    38. Issa Ibrahim Berchin & Jéssica Garcia & Mauri Luiz Heerdt & Angélica de Quevedo Moreira & Ana Clara Medeiros da Silveira & José Baltazar Salgueirinho Osório de Andrade Guerra, 2015. "Energy production and sustainability: A study of Belo Monte hydroelectric power plant," Natural Resources Forum, Blackwell Publishing, vol. 39(3-4), pages 224-237, August.

  13. J. F. Mercure & H. Pollitt & U. Chewpreecha & P. Salas & A. Foley & P. B. Holden & N. R. Edwards, 2013. "Complexity, economic science and possible economic benefits of climate change mitigation policy," Papers 1310.4403, arXiv.org, revised Jan 2015.

    Cited by:

    1. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    2. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.
    3. Kirsten Svenja Wiebe & Eivind Lekve Bjelle & Johannes Többen & Richard Wood, 2018. "Implementing exogenous scenarios in a global MRIO model for the estimation of future environmental footprints," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-18, December.

  14. Jean-Francois Mercure, 2012. "On the changeover timescales of technology transitions and induced efficiency changes: an overarching theory," Papers 1209.0424, arXiv.org.

    Cited by:

    1. J. -F. Mercure, 2013. "An age structured demographic theory of technological change," Papers 1304.3602, arXiv.org, revised Nov 2014.
    2. Jean-Francois Mercure & Pablo Salas, 2012. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Papers 1209.0708, arXiv.org, revised Jul 2013.

  15. J. F. Mercure & P. Salas, 2012. "An assessement of global energy resource economic potentials," Papers 1205.4693, arXiv.org, revised Aug 2012.

    Cited by:

    1. Marina Bertolini & Chiara D’Alpaos & Michele Moretto, 2016. "Investing in Photovoltaics: Timing, Plant Sizing and Smart Grids Flexibility," Working Papers 2016.60, Fondazione Eni Enrico Mattei.
    2. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    3. Marta Castellini & Luca Di Corato & Michele Moretto & Sergio Vergalli, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Working Papers 2021:24, Department of Economics, University of Venice "Ca' Foscari".
    4. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    5. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
    6. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    7. Hart, Rob, 2016. "Non-renewable resources in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 1-20.
    8. Gladkykh, Ganna & Spittler, Nathalie & Davíðsdóttir, Brynhildur & Diemer, Arnaud, 2018. "Steady state of energy: Feedbacks and leverages for promoting or preventing sustainable energy system development," Energy Policy, Elsevier, vol. 120(C), pages 121-131.
    9. Li, Xue & Lin, Cong & Wang, Yang & Zhao, Lingying & Duan, Na & Wu, Xudong, 2015. "Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing," Ecological Modelling, Elsevier, vol. 318(C), pages 184-193.
    10. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    11. Pollitt, Hector & Neuhoff, Karsten & Lin, Xinru, 2020. "The impact of implementing a consumption charge on carbon-intensive materials in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(sup1), pages 74-89.
    12. Arias-Gaviria, Jessica & Osorio, Andres F. & Arango-Aramburo, Santiago, 2020. "Estimating the practical potential for deep ocean water extraction in the Caribbean," Renewable Energy, Elsevier, vol. 150(C), pages 307-319.
    13. Anna Carolina Martins & Marcelo de Carvalho Pereira & Roberto Pasqualino, 2023. "Renewable Electricity Transition: A Case for Evaluating Infrastructure Investments through Real Options Analysis in Brazil," Sustainability, MDPI, vol. 15(13), pages 1-24, July.
    14. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    15. G R Venkatakrishnan & R Rengaraj & S Tamilselvi & J Harshini & Ansheela Sahoo & C Ahamed Saleel & Mohamed Abbas & Erdem Cuce & C Jazlyn & Saboor Shaik & Pinar Mert Cuce & Saffa Riffat, 2023. "Detection, location, and diagnosis of different faults in large solar PV system—a review," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 659-674.
    16. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.
    17. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    18. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    19. Pan, Pan & Wu, Shaopeng & Xiao, Yue & Liu, Gang, 2015. "A review on hydronic asphalt pavement for energy harvesting and snow melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 624-634.
    20. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2022. "The development of an assessment framework to determine the technical hydrogen production potential from wind and solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    21. Gregor Semieniuk & Philip B. Holden & Jean-Francois Mercure & Pablo Salas & Hector Pollitt & Katharine Jobson & Pim Vercoulen & Unnada Chewpreecha & Neil R. Edwards & Jorge E. Viñuales, 2022. "Stranded fossil-fuel assets translate to major losses for investors in advanced economies," Nature Climate Change, Nature, vol. 12(6), pages 532-538, June.
    22. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    23. Gopinath Subramani & Vigna K. Ramachandaramurthy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Josep M. Guerrero, 2017. "Grid-Tied Photovoltaic and Battery Storage Systems with Malaysian Electricity Tariff—A Review on Maximum Demand Shaving," Energies, MDPI, vol. 10(11), pages 1-17, November.
    24. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    25. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    26. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    27. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Monitoring system for photovoltaic plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1180-1207.
    28. Jean-Francois Mercure & Pablo Salas, 2012. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Papers 1209.0708, arXiv.org, revised Jul 2013.
    29. Ge He & Li Zhou & Yiyang Dai & Yagu Dang & Xu Ji, 2020. "Coal Industrial Supply Chain Network and Associated Evaluation Models," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    30. Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    31. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    32. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.
    33. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    34. Madeti, Siva Ramakrishna & Singh, S.N., 2017. "Online fault detection and the economic analysis of grid-connected photovoltaic systems," Energy, Elsevier, vol. 134(C), pages 121-135.
    35. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    36. Jean-Francois Mercure, 2012. "On the changeover timescales of technology transitions and induced efficiency changes: an overarching theory," Papers 1209.0424, arXiv.org.
    37. Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
    38. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.

  16. Jean-Francois Mercure & Pablo Salas, 2012. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Papers 1209.0708, arXiv.org, revised Jul 2013.

    Cited by:

    1. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    2. Roberto Ivo da Rocha Lima Filho & Thereza Cristina Nogueira de Aquino & Adriano Marçal Nogueira Neto, 2021. "Fuel price control in Brazil: environmental impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9811-9826, July.
    3. Pollitt, Hector & Neuhoff, Karsten & Lin, Xinru, 2020. "The impact of implementing a consumption charge on carbon-intensive materials in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(sup1), pages 74-89.
    4. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.
    6. Gregor Semieniuk & Philip B. Holden & Jean-Francois Mercure & Pablo Salas & Hector Pollitt & Katharine Jobson & Pim Vercoulen & Unnada Chewpreecha & Neil R. Edwards & Jorge E. Viñuales, 2022. "Stranded fossil-fuel assets translate to major losses for investors in advanced economies," Nature Climate Change, Nature, vol. 12(6), pages 532-538, June.
    7. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    8. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    9. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    10. Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    11. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    12. Kästel, Peter & Gilroy-Scott, Bryce, 2015. "Economics of pooling small local electricity prosumers—LCOE & self-consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 718-729.

Articles

  1. Gregor Semieniuk & Philip B. Holden & Jean-Francois Mercure & Pablo Salas & Hector Pollitt & Katharine Jobson & Pim Vercoulen & Unnada Chewpreecha & Neil R. Edwards & Jorge E. Viñuales, 2022. "Stranded fossil-fuel assets translate to major losses for investors in advanced economies," Nature Climate Change, Nature, vol. 12(6), pages 532-538, June.

    Cited by:

    1. Weth, Mark A. & Baltzer, Markus & Bertram, Christoph & Hilaire, Jérôme & Johnston, Craig, 2024. "The scenario-based equity price impact induced by greenhouse gas emissions," Discussion Papers 30/2024, Deutsche Bundesbank.
    2. Angelika von Dulong, 2023. "Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," Working Papers halshs-03828939, HAL.
    4. Talan B. İşcan & Benjamin Dennis, 2024. "A New Measure of Climate Transition Risk Based on Distance to a Global Emission Factor Frontier," Finance and Economics Discussion Series 2024-017, Board of Governors of the Federal Reserve System (U.S.).
    5. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    6. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," World Inequality Lab Working Papers halshs-03828939, HAL.
    7. Gourdel, Régis & Sydow, Matthias, 2023. "Non-banks contagion and the uneven mitigation of climate risk," International Review of Financial Analysis, Elsevier, vol. 89(C).
    8. Weimann, Lukas & Dubbink, Guus & van der Ham, Louis & Gazzani, Matteo, 2023. "A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation," Applied Energy, Elsevier, vol. 336(C).
    9. J. Rickman & M. Falkenberg & S. Kothari & F. Larosa & M. Grubb & N. Ameli, 2024. "The challenge of phasing-out fossil fuel finance in the banking sector," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Nakhli, Mohamed Sahbi & Gaies, Brahim & Hemrit, Wael & Sahut, Jean-Michel, 2024. "Twenty-year tango: Exploring the reciprocal influence of macro-financial instability and climate risks," Journal of Economic Behavior & Organization, Elsevier, vol. 220(C), pages 717-731.
    11. Richard S.J. Tol, 2023. "The fiscal implications of stringent climate policy," Working Paper Series 0523, Department of Economics, University of Sussex Business School.
    12. Gourdel, Régis & Sydow, Matthias, 2022. "Non-banks contagion and the uneven mitigation of climate risk," Working Paper Series 2757, European Central Bank.
    13. Golka, Philipp, 2024. "Assets and infrastructures," SocArXiv rbqm9, Center for Open Science.
    14. Hao Dong & Tao Li, 2023. "Climate Economics and Finance: A Literature Review," Climate Economics and Finance, Anser Press, vol. 1(1), pages 29-45, November.
    15. Marinkovic, Catalina & Vogt-Schilb, Adrien, 2023. "Is Energy Planning Consistent with Climate Goals? Assessing Future Emissions from Power Plants in Latin America and the Caribbean," IDB Publications (Working Papers) 13143, Inter-American Development Bank.
    16. Mehling, M. A., 2023. "Supply-Side Crediting to Manage Climate Policy Spillover Effects," Cambridge Working Papers in Economics 2345, Faculty of Economics, University of Cambridge.
    17. Patrick Moriarty & Damon Honnery, 2022. "Renewable Energy and Energy Reductions or Solar Geoengineering for Climate Change Mitigation?," Energies, MDPI, vol. 15(19), pages 1-16, October.
    18. Mohamed Boly & Jean-Louis Combes & Pascale Combes Motel, 2023. "Does environment pay for politicians?," Post-Print hal-04209496, HAL.
    19. Ma, Dandan & Zhang, Yunhan & Ji, Qiang & Zhao, Wan-Li & Zhai, Pengxiang, 2024. "Heterogeneous impacts of climate change news on China's financial markets," International Review of Financial Analysis, Elsevier, vol. 91(C).
    20. Giorgio Calcagnini & Germana Giombini & Edgar J. Sanchez Carrera, 2024. "Bank Lending Policies and Green Transition," Working Papers - Economics wp2024_16.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    21. Majid Mirza & Truzaar Dordi & Pedro Alguindigue & Ryan Johnson & Olaf Weber, 2023. "Sustainability in Private Capital Investing: A Systematic Literature Review," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 13(1), pages 119-119, July.
    22. Richard Bärnthaler & Andreas Novy & Lea Arzberger & Astrid Krisch & Hans Volmary, 2024. "The power to transform structures: power complexes and the challenges for realising a wellbeing economy," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.
    23. Bergman-Fonte, Clarissa & Nascimento da Silva, Gabriela & Império, Mariana & Draeger, Rebecca & Coutinho, Letícia & Cunha, Bruno S.L. & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Repurposing, co-processing and greenhouse gas mitigation – The Brazilian refining sector under deep decarbonization scenarios: A case study using integrated assessment modeling," Energy, Elsevier, vol. 282(C).

  2. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    See citations under working paper version above.
  3. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.

    Cited by:

    1. Pavlović, Boban & Ivezić, Dejan & Živković, Marija, 2022. "Transition pathways of household heating in Serbia: Analysis based on an agent-based model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Claudia Kemfert & Fabian Präger & Isabell Braunger & Franziska M. Hoffart & Hanna Brauers, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," Nature Energy, Nature, vol. 7(7), pages 582-587, July.
    3. Kamila Svobodova & John R. Owen & Deanna Kemp & Vítězslav Moudrý & Éléonore Lèbre & Martin Stringer & Benjamin K. Sovacool, 2022. "Decarbonization, population disruption and resource inventories in the global energy transition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    5. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. J. Rickman & M. Falkenberg & S. Kothari & F. Larosa & M. Grubb & N. Ameli, 2024. "The challenge of phasing-out fossil fuel finance in the banking sector," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Sun, Guanglin & Fang, Jiming & Li, Ting & Ai, Yongfang, 2024. "Effects of climate policy uncertainty on green innovation in Chinese enterprises," International Review of Financial Analysis, Elsevier, vol. 91(C).
    8. Vivien Foster & Philipp A. Trotter & Sven Werner & Melin Niedermayer & Yacob Mulugetta & Ploy Achakulwisut & Aoife Brophy & Navroz K. Dubash & Sam Fankhauser & Adam Hawkes & Stephanie Hirmer & Stuart , 2024. "Development transitions for fossil fuel-producing low and lower–middle income countries in a carbon-constrained world," Nature Energy, Nature, vol. 9(3), pages 242-250, March.
    9. Tong, Wenxuan & Lu, Zhengang & Chen, Yanbo & Zhao, Guoliang & Hunt, Julian David & Ren, Dawei & Xu, GuiZhi & Han, Minxiao, 2024. "Typical unit capacity configuration strategies and their control methods of modular gravity energy storage plants," Energy, Elsevier, vol. 295(C).
    10. Guo, Wen-Chung & Tseng, Ping-Lun, 2023. "COVID-19, bank risk, and capital regulation: The aggregate shock and social distancing," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 155-173.
    11. Nikas, Alexandros & Frilingou, Natasha & Heussaff, Conall & Fragkos, Panagiotis & Mittal, Shivika & Sampedro, Jon & Giarola, Sara & Sasse, Jan-Philipp & Rinaldi, Lorenzo & Doukas, Haris & Gambhir, Aja, 2024. "Three different directions in which the European Union could replace Russian natural gas," Energy, Elsevier, vol. 290(C).
    12. Hoffart, Franziska, 2022. "What is a feasible and 1.5°C-aligned hydrogen infrastructure for Germany? A multi-criteria economic study based on socio-technical energy scenarios," Ruhr Economic Papers 979, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    14. Wang, Kai-Hua & Kan, Jia-Min & Qiu, Lianhong & Xu, Shulin, 2023. "Climate policy uncertainty, oil price and agricultural commodity: From quantile and time perspective," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 256-272.
    15. Kleinnijenhuis, Alissa & Adrian, Tobias & Bolton, Patrick, 2022. "The Great Carbon Arbitrage," INET Oxford Working Papers 2022-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    16. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    17. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    18. Don Grant & Tyler Hansen & Andrew Jorgenson & Wesley Longhofer, 2024. "A worldwide analysis of stranded fossil fuel assets’ impact on power plants’ CO2 emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. de Moura, Fernanda Senra & Barbrook-Johnson, Peter, 2022. "Using data-driven systems mapping to contextualise complexity economics insights," INET Oxford Working Papers 2022-27, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    20. Hoffart, Franziska M. & D'Orazio, Paola & Holz, Franziska & Kemfert, Claudia, 2024. "Exploring the interdependence of climate, finance, energy, and geopolitics: A conceptual framework for systemic risks amidst multiple crises," Applied Energy, Elsevier, vol. 361(C).
    21. Zhang, Shuo & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "How would sustainable transformations in the electricity sector of megacities impact employment levels? A case study of Beijing," Energy, Elsevier, vol. 270(C).
    22. Haoyue Liang & Fengqi You, 2023. "Reshoring silicon photovoltaics manufacturing contributes to decarbonization and climate change mitigation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

  4. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).

    Cited by:

    1. Tang, Yesi & Yang, Shudong, 2024. "Mineral resource sustainability in the face of the resource exploitation and green recovery: Challenges and solutions," Resources Policy, Elsevier, vol. 88(C).
    2. Song, Yanan & Hua, Xiaolong, 2024. "The role of carbon taxation in promoting a green economy for sustainability: Optimizing natural resource efficiency," Resources Policy, Elsevier, vol. 91(C).
    3. Jingzhi Cao & Haiquan Wu & Yuyou Zou, 2024. "RETRACTED ARTICLE: Advancing sustainable development: the impact of energy transition on accelerating technological progress," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-20, April.
    4. López-Bernabé, Elena & Linares, Pedro & Galarraga, Ibon, 2022. "Energy-efficiency policies for decarbonising residential heating in Spain: A fuzzy cognitive mapping approach," Energy Policy, Elsevier, vol. 171(C).

  5. Maria-Augusta Paim & Pablo Salas & Sören Lindner & Hector Pollitt & Jean-Francois Mercure & Neil R. Edwards & Jorge E. Viñuales, 2020. "Mainstreaming the Water-Energy-Food Nexus through nationally determined contributions (NDCs): the case of Brazil," Climate Policy, Taylor & Francis Journals, vol. 20(2), pages 163-178, February.

    Cited by:

    1. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    2. Carvalho, N.B. & Berrêdo Viana, D. & Muylaert de Araújo, M.S. & Lampreia, J. & Gomes, M.S.P. & Freitas, M.A.V., 2020. "How likely is Brazil to achieve its NDC commitments in the energy sector? A review on Brazilian low-carbon energy perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

  6. Florian Knobloch & Steef V. Hanssen & Aileen Lam & Hector Pollitt & Pablo Salas & Unnada Chewpreecha & Mark A. J. Huijbregts & Jean-Francois Mercure, 2020. "Net emission reductions from electric cars and heat pumps in 59 world regions over time," Nature Sustainability, Nature, vol. 3(6), pages 437-447, June.

    Cited by:

    1. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    2. Giannousakis, Anastasis & Hilaire, Jérôme & Nemet, Gregory F. & Luderer, Gunnar & Pietzcker, Robert C. & Rodrigues, Renato & Baumstark, Lavinia & Kriegler, Elmar, 2021. "How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways," Energy, Elsevier, vol. 216(C).
    3. David Meyer & Robert Schoetter & Maarten Reeuwijk, 2024. "Energy and environmental impacts of air-to-air heat pumps in a mid-latitude city," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Anders Arvesen & Steve Völler & Christine Roxanne Hung & Volker Krey & Magnus Korpås & Anders Hammer Strømman, 2021. "Emissions of electric vehicle charging in future scenarios: The effects of time of charging," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1250-1263, October.
    5. Chen Chris Gong & Falko Ueckerdt & Christoph Bertram & Yuxin Yin & David Bantje & Robert Pietzcker & Johanna Hoppe & Robin Hasse & Michaja Pehl & Sim'on Moreno-Leiva & Jakob Duerrwaechter & Jarusch Mu, 2023. "Multi-level emission impacts of electrification and coal pathways in China's netzero transition," Papers 2312.04332, arXiv.org, revised Aug 2024.
    6. Miguel Á. García-Fuentes & Javier Antolín & Cristina de Torre & Ana Pérez & Isabel Tomé & María L. Mirantes & Fátima López & Javier Martín & Jaime Gómez, 2021. "Evaluation of Results of City Sustainable Transformation Projects in the Fields of Mobility and Energy Efficiency with Real Application in a District in Valladolid (Spain)," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    7. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    8. Kondev, Bozhil & Dixon, James & Zhou, Zhaoqi & Sabyrbekov, Rahat & Sultanaliev, Kanat & Hirmer, Stephanie A., 2023. "Putting the foot down: Accelerating EV uptake in Kyrgyzstan," Transport Policy, Elsevier, vol. 131(C), pages 87-96.
    9. Sławomir Dorocki & Dorota Wantuch-Matla, 2021. "Power Two-Wheelers as an Element of Sustainable Urban Mobility in Europe," Land, MDPI, vol. 10(6), pages 1-25, June.
    10. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    11. Alexandra Devlin & Jannik Kossen & Haulwen Goldie-Jones & Aidong Yang, 2023. "Global green hydrogen-based steel opportunities surrounding high quality renewable energy and iron ore deposits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Jan Rosenow & Duncan Gibb & Thomas Nowak & Richard Lowes, 2022. "Heating up the global heat pump market," Nature Energy, Nature, vol. 7(10), pages 901-904, October.
    13. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    14. Sanna Wickerts & Rickard Arvidsson & Anders Nordelöf & Magdalena Svanström & Patrik Johansson, 2024. "Prospective life cycle assessment of sodium‐ion batteries made from abundant elements," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 116-129, February.
    15. Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).
    16. Sanguinetti, Angela & Favetti, Matthew & Hirschfelt, Kate & Kong, Nathaniel & Chakraborty, Debapriya & Alston-Stepnitz, Eli & Ma, Howard, 2023. "Developing a Vehicle Cost Calculator to Promote Electric Vehicle Adoption Among TNC Drivers," Institute of Transportation Studies, Working Paper Series qt1v44b5kp, Institute of Transportation Studies, UC Davis.
    17. Ou, Yang & Kittner, Noah & Babaee, Samaneh & Smith, Steven J. & Nolte, Christopher G. & Loughlin, Daniel H., 2021. "Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human-Earth systems model," Applied Energy, Elsevier, vol. 300(C).
    18. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    19. Ashley Nunes & Lucas Woodley & Philip Rossetti, 2022. "Re-thinking procurement incentives for electric vehicles to achieve net-zero emissions," Nature Sustainability, Nature, vol. 5(6), pages 527-532, June.
    20. Arthur Schram & Aljaž Ule, 2024. "Regulatory independence may limit electoral holdup but entrench capture," Public Choice, Springer, vol. 198(3), pages 403-425, March.
    21. Chen, Xu & Li, Zhongshu & Gallagher, Kevin P. & Mauzerall, Denise L., 2021. "Financing carbon lock-in in developing countries: Bilateral financing for power generation technologies from China, Japan, and the United States," Applied Energy, Elsevier, vol. 300(C).
    22. Fajar Nurrohman Haryadi & Arionmaro Asi Simaremare & Shochrul Rohmatul Rohmatul & Dzikri Firmansyah Hakam & Kevin Gausultan Hadith Mangunkusumo, 2023. "Investigating the Impact of Key Factors on Electric/Electric-Vehicle Charging Station Adoption in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 434-442, May.
    23. Rotaris, Lucia & Giansoldati, Marco & Scorrano, Mariangela, 2021. "The slow uptake of electric cars in Italy and Slovenia. Evidence from a stated-preference survey and the role of knowledge and environmental awareness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 1-18.
    24. Markus Fleschutz & Markus Bohlayer & Marco Braun & Michael D. Murphy, 2023. "From prosumer to flexumer: Case study on the value of flexibility in decarbonizing the multi-energy system of a manufacturing company," Papers 2301.07997, arXiv.org.
    25. Adeline Gu'eret & Wolf-Peter Schill & Carlos Gaete-Morales, 2024. "Impacts of electric carsharing on a power sector with variable renewables," Papers 2402.19380, arXiv.org, revised Oct 2024.
    26. Mariangela Scorrano & Romeo Danielis & Stefano Pastore & Vanni Lughi & Alessandro Massi Pavan, 2020. "Modeling the Total Cost of Ownership of an Electric Car Using a Residential Photovoltaic Generator and a Battery Storage Unit—An Italian Case Study," Energies, MDPI, vol. 13(10), pages 1-21, May.
    27. Yue Ren & Xin Sun & Paul Wolfram & Shaoqiong Zhao & Xu Tang & Yifei Kang & Dongchang Zhao & Xinzhu Zheng, 2023. "Hidden delays of climate mitigation benefits in the race for electric vehicle deployment," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    28. Shize Qin & Lena Klaa{ss}en & Ulrich Gallersdorfer & Christian Stoll & Da Zhang, 2020. "Bitcoin's future carbon footprint," Papers 2011.02612, arXiv.org, revised Jan 2021.
    29. Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
    30. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    31. Jack N. Barkenbus, 2020. "Prospects for Electric Vehicles," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    32. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    33. Li, Xiangyang & Song, Yuanyuan, 2024. "Industrial ripples: Automotive electrification sends through carbon emissions," Energy Policy, Elsevier, vol. 187(C).
    34. Jia, Wenjian & Chen, T. Donna, 2023. "Investigating heterogeneous preferences for plug-in electric vehicles: Policy implications from different choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    35. Nuri C. Onat & Jafar Mandouri & Murat Kucukvar & Burak Sen & Saddam A. Abbasi & Wael Alhajyaseen & Adeeb A. Kutty & Rateb Jabbar & Marcello Contestabile & Abdel Magid Hamouda, 2023. "Rebound effects undermine carbon footprint reduction potential of autonomous electric vehicles," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    36. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    37. Chunbo Zhang & Xiang Zhao & Romain Sacchi & Fengqi You, 2023. "Trade-off between critical metal requirement and transportation decarbonization in automotive electrification," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    38. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    39. Amir F. N. Abdul-Manan & Victor Gordillo Zavaleta & Avinash Kumar Agarwal & Gautam Kalghatgi & Amer A. Amer, 2022. "Electrifying passenger road transport in India requires near-term electricity grid decarbonisation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    40. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    41. Sacchi, R. & Bauer, C. & Cox, B. & Mutel, C., 2022. "When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    42. Ren, Haoshan & Ma, Zhenjun & Ming Lun Fong, Alan & Sun, Yongjun, 2022. "Optimal deployment of distributed rooftop photovoltaic systems and batteries for achieving net-zero energy of electric bus transportation in high-density cities," Applied Energy, Elsevier, vol. 319(C).
    43. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.
    44. Rostad Sæther, Simen, 2022. "Mobility at the crossroads – Electric mobility policy and charging infrastructure lessons from across Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 144-159.

  7. David J. Beerling & Euripides P. Kantzas & Mark R. Lomas & Peter Wade & Rafael M. Eufrasio & Phil Renforth & Binoy Sarkar & M. Grace Andrews & Rachael H. James & Christopher R. Pearce & Jean-Francois , 2020. "Potential for large-scale CO2 removal via enhanced rock weathering with croplands," Nature, Nature, vol. 583(7815), pages 242-248, July.

    Cited by:

    1. Terre Satterfield & Sara Nawaz & Guillaume Peterson St-Laurent, 2023. "Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’," Climatic Change, Springer, vol. 176(2), pages 1-21, February.
    2. Castle, Jennifer L. & Hendry, David F., 2024. "Five sensitive intervention points to achieve climate neutrality by 2050, illustrated by the UK," Renewable Energy, Elsevier, vol. 226(C).
    3. Harrison, Nicholas & Herrera Jiménez, Juan & Krieger Merico, Luiz F. & Lorenzo, Santiago & Rondón Toro, Estefani & Rouse, Paul & Samaniego, Joseluis, 2023. "Nature-based solutions and carbon dioxide removal," Documentos de Proyectos 48691, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Patrick Moriarty & Damon Honnery, 2020. "New Approaches for Ecological and Social Sustainability in a Post-Pandemic World," World, MDPI, vol. 1(3), pages 1-14, October.
    5. Oppon, Eunice & Richter, Justin S. & Koh, S.C. Lenny & Nabayiga, Hellen, 2023. "Macro-level economic and environmental sustainability of negative emission technologies; Case study of crushed silicate production for enhanced weathering," Ecological Economics, Elsevier, vol. 204(PA).
    6. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Daniel M. Franks & Julia Keenan & Degol Hailu, 2023. "Mineral security essential to achieving the Sustainable Development Goals," Nature Sustainability, Nature, vol. 6(1), pages 21-27, January.

  8. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).

    Cited by:

    1. Xiyan Mao & Peiyu Wang, 2023. "Import–export nexus and China's emerging trade in environmental goods," Growth and Change, Wiley Blackwell, vol. 54(1), pages 157-181, March.
    2. Liu, Huiling & Zhang, Jianhua & Lei, Heng, 2022. "Do imported environmental goods reduce pollution intensity? The end use matters," Energy Economics, Elsevier, vol. 112(C).
    3. Huiling Liu & Jianhua Zhang & Hongyun Huang & Haitao Wu & Yu Hao, 2023. "Environmental good exports and green total factor productivity: Lessons from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1681-1703, June.
    4. Bacchetta, Marc & Bekkers, Eddy & Solleder, Jean-Marc & Tresa, Enxhi, 2023. "The potential impact of environmental goods trade liberalization on trade and emissions," WTO Staff Working Papers ERSD-2023-05, World Trade Organization (WTO), Economic Research and Statistics Division.
    5. Duan, Yuqi, 2021. "What is The Impact of Chinas Entry into the WTO on CO2 Emissions?," Warwick-Monash Economics Student Papers 26, Warwick Monash Economics Student Papers.
    6. Bacchetta, Marc & Bekkers, Eddy & Solleder, J.M. & Tresa, Enxhi, 2022. "Environmental Goods Trade Liberalization: A Quantitative Modelling Study of Trade and Emission Effects," Conference papers 333427, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

  9. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.

    Cited by:

    1. Víctor Correa-Porcel & Laura Piedra-Muñoz & Emilio Galdeano-Gómez, 2021. "Water–Energy–Food Nexus in the Agri-Food Sector: Research Trends and Innovating Practices," IJERPH, MDPI, vol. 18(24), pages 1-31, December.
    2. Hoolohan, Claire & McLachlan, Carly & Larkin, Alice, 2019. "‘Aha’ moments in the water-energy-food nexus: A new morphological scenario method to accelerate sustainable transformation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    3. Shuyuan Liu & Lichuan Wang & Jin Lin & Huan Wang & Xuegang Li & Tianqi Ao, 2023. "Evaluation of Water-Energy-Food-Ecology System Development in Beijing-Tianjin-Hebei Region from a Symbiotic Perspective and Analysis of Influencing Factors," Sustainability, MDPI, vol. 15(6), pages 1-19, March.
    4. Sobratee-Fajurally, N. & Mabhaudhi, Tafadzwanashe, 2022. "Inclusive sustainable landscape management in West and Central Africa: enabling co-designing contexts for systemic sensibility," IWMI Books, Reports H051652, International Water Management Institute.
    5. Abbade, Eduardo Botti, 2020. "Land and water footprints associated with rice and maize losses in Brazil," Land Use Policy, Elsevier, vol. 99(C).
    6. Machado, R.L. & Abreu, M.R., 2024. "Multi-objective optimization of the first and second-generation ethanol supply chain in Brazil using the water-energy-food-land nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    7. Lampis, Andrea & Ibañez Martín, María María & Zabaloy, María Florencia & Schirmer Soares, Raiana & Guzowski, Carina & Mandai, Silvia Sayuri & Lazaro, Lira Luz Benites & Hermsdorff, Sonia Maria G.L. & , 2022. "Energy transition or energy diversification? Critical thoughts from Argentina and Brazil," Energy Policy, Elsevier, vol. 171(C).
    8. Zeyang Bian & Dan Liu, 2021. "A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus," IJERPH, MDPI, vol. 18(16), pages 1-24, August.
    9. Pulighe, Giuseppe & Pirelli, Tiziana, 2023. "Assessing the sustainability of bioenergy pathways through a land-water-energy nexus approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    10. Schlör, Holger & Märker, Carolin & Venghaus, Sandra, 2021. "Developing a nexus systems thinking test –A qualitative multi- and mixed methods analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Lu, Shibao & Zhang, Xiaoling & Peng, Huarong & Skitmore, Martin & Bai, Xiao & Zheng, Zhihong, 2021. "The energy-food-water nexus: Water footprint of Henan-Hubei-Hunan in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    13. Poblete, Israel Bernardo S. & Araujo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2020. "Dynamic analysis of sustainable biogas-combined-cycle plant: Time-varying demand and bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Espinosa-Tasón, Jaime & Berbel, Julio & Gutiérrez-Martín, Carlos, 2020. "Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017," Agricultural Water Management, Elsevier, vol. 233(C).
    15. Lazaro, Lira Luz Benites & Giatti, Leandro Luiz & Bermann, Celio & Giarolla, Angelica & Ometto, Jean, 2021. "Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. João Marcelo Pereira Ribeiro & Issa Ibrahim Berchin & Samara da Silva Neiva & Thiago Soares & Celso Lopes de Albuquerque Junior & André Borchardt Deggau & Wellyngton Silva de Amorim & Samuel Borges Ba, 2021. "Food stability model: A framework to support decision‐making in a context of climate change," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 13-24, January.
    17. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    18. Bentley, Chance & Anandhi, Aavudai, 2020. "Representing driver-response complexity in ecosystems using an improved conceptual model," Ecological Modelling, Elsevier, vol. 437(C).
    19. Correa-Cano, M.E. & Salmoral, G. & Rey, D. & Knox, J.W. & Graves, A. & Melo, O. & Foster, W. & Naranjo, L. & Zegarra, E. & Johnson, C. & Viteri-Salazar, O. & Yan, X., 2022. "A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Caiado Couto, Lilia & Campos, Luiza C. & da Fonseca-Zang, Warde & Zang, Joachim & Bleischwitz, Raimund, 2021. "Water, waste, energy and food nexus in Brazil: Identifying a resource interlinkage research agenda through a systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

  10. Jean-Francois Mercure & Florian Knobloch & Hector Pollitt & Leonidas Paroussos & S. Serban Scrieciu & Richard Lewney, 2019. "Modelling innovation and the macroeconomics of low-carbon transitions: theory, perspectives and practical use," Climate Policy, Taylor & Francis Journals, vol. 19(8), pages 1019-1037, September.

    Cited by:

    1. Qu, Yang & Hooper, Tara & Austen, Melanie C. & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Development of a computable general equilibrium model based on integrated macroeconomic framework for ocean multi-use between offshore wind farms and fishing activities in Scotland," Applied Energy, Elsevier, vol. 332(C).
    2. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    3. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    4. Yannis Dafermos & Maria Nikolaidi, 2021. "How can green differentiated capital requirements affect climate risks? A dynamic macrofinancial analysis," Working Papers PKWP2105, Post Keynesian Economics Society (PKES).
    5. Yanhong Liu & Jia Lei & Yihua Zhang, 2021. "A Study on the Sustainable Relationship among the Green Finance, Environment Regulation and Green-Total-Factor Productivity in China," Sustainability, MDPI, vol. 13(21), pages 1-27, October.
    6. Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
    7. Wenbing Luo & Ziyan Tian & Shihu Zhong & Qinke Lyu & Mingjun Deng, 2022. "Global Evolution of Research on Sustainable Finance from 2000 to 2021: A Bibliometric Analysis on WoS Database," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    8. Christian Lutz & Lisa Becker & Andreas Kemmler, 2021. "Socioeconomic Effects of Ambitious Climate Mitigation Policies in Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    9. F.H.J. Polzin & M.W.J.L. Sanders, 2019. "How to fill the ‘financing gap’ for the transition to low-carbon energy in Europe?," Working Papers 19-18, Utrecht School of Economics.
    10. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    11. Zoi Vrontisi & Ioannis Charalampidis & Ulrike Lehr & Mark Meyer & Leonidas Paroussos & Christian Lutz & Yen E. Lam-González & Anastasia Arabadzhyan & Matías M. González & Carmelo J. León, 2022. "Macroeconomic impacts of climate change on the Blue Economy sectors of southern European islands," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    12. Patrick Bolton Patrick & Després Morgan & Pereira da Silva Luiz Awazu & Samama Frédéric & Svartzman Romain, 2020. "“Green Swans”: central banks in the age of climate-related risks [Le « Cygne Vert » : les banques centrales à l’ère des risques climatiques]," Bulletin de la Banque de France, Banque de France, issue 229.
    13. Relva, Stefania Gomes & Silva, Vinícius Oliveira da & Gimenes, André Luiz Veiga & Udaeta, Miguel Edgar Morales & Ashworth, Peta & Peyerl, Drielli, 2021. "Enhancing developing countries’ transition to a low-carbon electricity sector," Energy, Elsevier, vol. 220(C).
    14. Johannes Reinhard Többen & Martin Distelkamp & Britta Stöver & Saskia Reuschel & Lara Ahmann & Christian Lutz, 2022. "Global Land Use Impacts of Bioeconomy: An Econometric Input–Output Approach," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
    15. Liang Li & Gang Li & Ilhan Ozturk & Sana Ullah, 2023. "Green innovation and environmental sustainability: Do clean energy investment and education matter?," Energy & Environment, , vol. 34(7), pages 2705-2720, November.
    16. Catalano,Michele & Forni,Lorenzo, 2022. "Fiscal Policies for a Sustainable Recovery and a Green Transformation," Policy Research Working Paper Series 9799, The World Bank.
    17. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    18. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    19. Camila Gramkow & Annela Anger-Kraavi, 2019. "Developing Green: A Case for the Brazilian Manufacturing Industry," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    20. Alexandri, Eva & Antón, José-Ignacio & Lewney, Richard, 2024. "The impact of climate change mitigation policies on European labour markets," Ecological Economics, Elsevier, vol. 216(C).
    21. Kostas Fragkiadakis & Panagiotis Fragkos & Leonidas Paroussos, 2020. "Low-Carbon R&D Can Boost EU Growth and Competitiveness," Energies, MDPI, vol. 13(19), pages 1-29, October.
    22. Shinya Kato & Soocheol Lee & Yanmin He & Tsutomu Yoshioka & Toru Morotomi & Unnada Chewpreecha, 2023. "Impact of Carbon Neutrality on the Economy and Industry Assuming Japan’s Achievement of 2030 Power Mix Plan: A 2050 Perspective Based on the E3ME Macro-Econometric Model," Energies, MDPI, vol. 16(18), pages 1-18, September.
    23. Leonidas Paroussos & Kostas Fragkiadakis & Panagiotis Fragkos, 2020. "Macro-economic analysis of green growth policies: the role of finance and technical progress in Italian green growth," Climatic Change, Springer, vol. 160(4), pages 591-608, June.
    24. Nieto, Jaime & Pollitt, Hector & Brockway, Paul E. & Clements, Lucy & Sakai, Marco & Barrett, John, 2021. "Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030," Energy Policy, Elsevier, vol. 158(C).
    25. Thomas Allen & Stéphane Dees & Jean Boissinot & Carlos Mateo Caicedo Graciano & Valérie Chouard & Laurent Clerc & Annabelle de Gaye & Antoine Devulder & Sébastien Diot & Noémie Lisack & Fulvio Pegorar, 2020. "Climate-Related Scenarios for Financial Stability Assessment: an Application to France," Working papers 774, Banque de France.
    26. Ekaterina Rhodes & Kira Craig & Aaron Hoyle & Madeleine McPherson, 2021. "How Do Energy-Economy Models Compare? A Survey of Model Developers and Users in Canada," Sustainability, MDPI, vol. 13(11), pages 1-39, May.
    27. Bachner, G. & Mayer, J. & Steininger, K.W. & Anger-Kraavi, A. & Smith, A. & Barker, T.S., 2020. "Uncertainties in macroeconomic assessments of low-carbon transition pathways - The case of the European iron and steel industry," Ecological Economics, Elsevier, vol. 172(C).
    28. Joseph Anthony L. Reyes, 2021. "How Different Are the Nordics? Unravelling the Willingness to Make Economic Sacrifices for the Environment," Sustainability, MDPI, vol. 13(3), pages 1-31, January.
    29. Weitzel, Matthias & Vandyck, Toon & Rey Los Santos, Luis & Tamba, Marie & Temursho, Umed & Wojtowicz, Krzysztof, 2023. "A comprehensive socio-economic assessment of EU climate policy pathways," Ecological Economics, Elsevier, vol. 204(PA).

  11. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.

    Cited by:

    1. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    2. da Silva, Vinícius Oliveira & Relva, Stefania Gomes & Mondragon, Marcella & Mendes, André Bergsten & Nishimoto, Kazuo & Peyerl, Drielli, 2023. "Building Options for the Brazilian Pre-salt: A technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration," Resources Policy, Elsevier, vol. 81(C).
    3. Ioris, Antonio A.R., 2020. "Socioecological economics of water development in the Brazilian Amazon: Elements for a critical reflection," Ecological Economics, Elsevier, vol. 173(C).
    4. Liu, Shuangquan & Yang, Qiang & Cai, Huaxiang & Yan, Minghui & Zhang, Maolin & Wu, Dianning & Xie, Mengfei, 2019. "Market reform of Yunnan electricity in southwestern China: Practice, challenges and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Maestri, Cláudia Olímpia Neves Mamede & Andrade, Maria Elisabeth Moreira Carvalho, 2022. "Priorities for tariff compensation of distributed electricity generation in Brazil," Utilities Policy, Elsevier, vol. 76(C).
    6. Tapia Carpio, Lucio Guido, 2021. "Mitigating the risk of photovoltaic power generation: A complementarity model of solar irradiation in diverse regions applied to Brazil," Utilities Policy, Elsevier, vol. 71(C).
    7. Nadaleti, Willian Cézar & Gomes, Jeferson Peres, 2023. "Green hydrogen production from urban waste biogas: An analysis of the Brazilian potential and the process’ economic viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Kosai, Shoki & Unesaki, Hironobu, 2020. "Short-term vs long-term reliance: Development of a novel approach for diversity of fuels for electricity in energy security," Applied Energy, Elsevier, vol. 262(C).
    9. Glyniadakis, Sofia & Balestieri, José Antônio Perrella, 2023. "Brazilian light vehicle fleet decarbonization scenarios for 2050," Energy Policy, Elsevier, vol. 181(C).

  12. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.

    Cited by:

    1. Indre Siksnelyte & Edmundas Kazimieras Zavadskas, 2019. "Achievements of the European Union Countries in Seeking a Sustainable Electricity Sector," Energies, MDPI, vol. 12(12), pages 1-16, June.
    2. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    3. Yu, Shiwei & Liu, Jie & Hu, Xing & Tian, Peng, 2022. "Does development of renewable energy reduce energy intensity? Evidence from 82 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

  13. J.-F. Mercure & A. Lam & S. Billington & H. Pollitt, 2018. "Integrated assessment modelling as a positive science: private passenger road transport policies to meet a climate target well below 2 ∘C," Climatic Change, Springer, vol. 151(2), pages 109-129, November.

    Cited by:

    1. Nordin, Ida & Elofsson, Katarina & Jansson, Torbjörn, 2024. "Cost-effective reductions in greenhouse gas emissions: Reducing fuel consumption or replacing fossil fuels with biofuels," Energy Policy, Elsevier, vol. 190(C).
    2. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    4. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    5. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
    6. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    7. Alexandri, Eva & Antón, José-Ignacio & Lewney, Richard, 2024. "The impact of climate change mitigation policies on European labour markets," Ecological Economics, Elsevier, vol. 216(C).
    8. Walter, Antonia & Held, Maximilian & Pareschi, Giacomo & Pengg, Hermann & Madlener, Reinhard, 2020. "Decarbonizing the European Automobile Fleet: Impacts of 1.5 °C-compliant Climate Policies in Germany and Norway," FCN Working Papers 18/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    9. Paul Wolfram & Qingshi Tu & Niko Heeren & Stefan Pauliuk & Edgar G. Hertwich, 2021. "Material efficiency and climate change mitigation of passenger vehicles," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 494-510, April.

  14. P. B. Holden & N. R. Edwards & A. Ridgwell & R. D. Wilkinson & K. Fraedrich & F. Lunkeit & H. Pollitt & J.-F. Mercure & P. Salas & A. Lam & F. Knobloch & U. Chewpreecha & J. E. Viñuales, 2018. "Climate–carbon cycle uncertainties and the Paris Agreement," Nature Climate Change, Nature, vol. 8(7), pages 609-613, July.

    Cited by:

    1. Gregor Semieniuk & Emanuele Campiglio & Jean-Francois Mercure & Ulrich Volz & Neil R. Edwards, 2020. "Low-carbon transition risks for finance," Working Papers 233, Department of Economics, SOAS University of London, UK.
    2. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    3. Derbyshire, James & Morgan, Jamie, 2022. "Is seeking certainty in climate sensitivity measures counterproductive in the context of climate emergency? The case for scenario planning," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

  15. Hector Pollitt & Jean-Francois Mercure, 2018. "The role of money and the financial sector in energy-economy models used for assessing climate and energy policy," Climate Policy, Taylor & Francis Journals, vol. 18(2), pages 184-197, February.

    Cited by:

    1. Pim Vercoulen & Soocheol Lee & Xu Han & Wendan Zhang & Yongsung Cho & Jun Pang, 2023. "Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel," Energies, MDPI, vol. 16(11), pages 1-24, June.
    2. Yannis Dafermos & Maria Nikolaidi, 2019. "Fiscal policy and ecological sustainability: A post-Keynesian perspective," Working Papers PKWP1912, Post Keynesian Economics Society (PKES).
    3. Jesse M. Keenan & Anurag Gumber, 2019. "California climate adaptation trust fund: exploring the leveraging of cap-and-trade proceeds," Environment Systems and Decisions, Springer, vol. 39(4), pages 454-465, December.
    4. D’Orazio, Paola & Valente, Marco, 2019. "The role of finance in environmental innovation diffusion: An evolutionary modeling approach," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 417-439.
    5. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," Working Papers hal-03128619, HAL.
    6. Gramkow, Camila, 2020. "Green fiscal policies: An armoury of instruments to recover growth sustainably," Estudios y Perspectivas – Oficina de la CEPAL en Brasilia 45418, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    7. Bhatnagar, S. & Sharma, D., 2022. "Evolution of green finance and its enablers: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    9. Flori, Andrea & Pammolli, Fabio & Spelta, Alessandro, 2021. "Commodity prices co-movements and financial stability: A multidimensional visibility nexus with climate conditions," Journal of Financial Stability, Elsevier, vol. 54(C).
    10. Yannis Dafermos & Maria Nikolaidi, 2019. "Fiscal policy and ecological sustainability," FMM Working Paper 52-2019, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    11. Sievers, Luisa & Breitschopf, Barbara & Pfaff, Matthias & Schaffer, Axel, 2019. "Macroeconomic impact of the German energy transition and its distribution by sectors and regions," Ecological Economics, Elsevier, vol. 160(C), pages 191-204.
    12. Pollitt, Hector & Neuhoff, Karsten & Lin, Xinru, 2020. "The impact of implementing a consumption charge on carbon-intensive materials in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(sup1), pages 74-89.
    13. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    14. Zoi Vrontisi & Ioannis Charalampidis & Ulrike Lehr & Mark Meyer & Leonidas Paroussos & Christian Lutz & Yen E. Lam-González & Anastasia Arabadzhyan & Matías M. González & Carmelo J. León, 2022. "Macroeconomic impacts of climate change on the Blue Economy sectors of southern European islands," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    15. Farid Ullah & Ma Degong & Muhammad Anwar & Saddam Hussain & Rizwan Ullah, 2021. "Supportive tactics for innovative and sustainability performance in emerging SMEs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
    16. Xu Han & Pim Vercoulen & Soocheol Lee & Aileen Lam & Shinya Kato & Toru Morotomi, 2023. "Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model," Energies, MDPI, vol. 16(21), pages 1-23, November.
    17. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    18. Soocheol Lee & Unnada Chewpreecha & Hector Pollitt & Satoshi Kojima, 2018. "An economic assessment of carbon tax reform to meet Japan’s NDC target under different nuclear assumptions using the E3ME model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 411-429, April.
    19. Briera, Thibault & Lefèvre, Julien, 2024. "Reducing the cost of capital through international climate finance to accelerate the renewable energy transition in developing countries," Energy Policy, Elsevier, vol. 188(C).
    20. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    21. Camila Gramkow & Annela Anger-Kraavi, 2019. "Developing Green: A Case for the Brazilian Manufacturing Industry," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    22. Mark Meyer & Martin Hirschnitz-Garbers & Martin Distelkamp, 2018. "Contemporary Resource Policy and Decoupling Trends—Lessons Learnt from Integrated Model-Based Assessments," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    23. Nieto, Jaime & Pollitt, Hector & Brockway, Paul E. & Clements, Lucy & Sakai, Marco & Barrett, John, 2021. "Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030," Energy Policy, Elsevier, vol. 158(C).
    24. Ekaterina Rhodes & Kira Craig & Aaron Hoyle & Madeleine McPherson, 2021. "How Do Energy-Economy Models Compare? A Survey of Model Developers and Users in Canada," Sustainability, MDPI, vol. 13(11), pages 1-39, May.
    25. Bachner, G. & Mayer, J. & Steininger, K.W. & Anger-Kraavi, A. & Smith, A. & Barker, T.S., 2020. "Uncertainties in macroeconomic assessments of low-carbon transition pathways - The case of the European iron and steel industry," Ecological Economics, Elsevier, vol. 172(C).
    26. Eszter Boros, 2020. "Risks of Climate Change and Credit Institution Stress Tests," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 19(4), pages 107-131.

  16. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    See citations under working paper version above.
  17. P. B. Holden & N. R. Edwards & A. Ridgwell & R. D. Wilkinson & K. Fraedrich & F. Lunkeit & H. Pollitt & J.-F. Mercure & P. Salas & A. Lam & F. Knobloch & U. Chewpreecha & J. E. Viñuales, 2018. "Author Correction: Climate–carbon cycle uncertainties and the Paris Agreement," Nature Climate Change, Nature, vol. 8(10), pages 921-921, October.

    Cited by:

    1. Gregor Semieniuk & Emanuele Campiglio & Jean-Francois Mercure & Ulrich Volz & Neil R. Edwards, 2020. "Low-carbon transition risks for finance," Working Papers 233, Department of Economics, SOAS University of London, UK.
    2. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    3. Derbyshire, James & Morgan, Jamie, 2022. "Is seeking certainty in climate sensitivity measures counterproductive in the context of climate emergency? The case for scenario planning," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    4. Mingming Wang & Xiaowei Guo & Shuai Zhang & Liujun Xiao & Umakant Mishra & Yuanhe Yang & Biao Zhu & Guocheng Wang & Xiali Mao & Tian Qian & Tong Jiang & Zhou Shi & Zhongkui Luo, 2022. "Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

  18. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.

    Cited by:

    1. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    2. Pruethsan Sutthichaimethee, 2024. "A Framework on Setting Strategies for Enhancing the Efficiency of State Power use in Thailand’s Pursuit of a Green Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 108-120, January.
    3. Anders F. Jensen & Thomas K. Rasmussen & Carlo G. Prato, 2020. "A Route Choice Model for Capturing Driver Preferences When Driving Electric and Conventional Vehicles," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    4. José M. Cansino & Antonio Sánchez-Braza & Teresa Sanz-Díaz, 2018. "Policy Instruments to Promote Electro-Mobility in the EU28: A Comprehensive Review," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    5. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    6. Hartvig, Áron Dénes & Kiss-Dobronyi, Bence & Kotek, Péter & Takácsné Tóth, Borbála & Gutzianas, Ioannis & Zareczky, András Zsombor, 2024. "The economic and energy security implications of the Russian energy weapon," Energy, Elsevier, vol. 294(C).
    7. Shih, Hsiu-Ching & Chiang, Chia-Yun & Lai, Hsin-Chih & Hsiao, Min-Chuan & Chen, Li-Heng & Ma, Hwong-wen, 2023. "Assessing the nexus of electric vehicle and energy policies on health risks," Energy, Elsevier, vol. 282(C).

  19. J.-F. Mercure & H. Pollitt & J. E. Viñuales & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & I. Sognnaes & A. Lam & F. Knobloch, 2018. "Macroeconomic impact of stranded fossil fuel assets," Nature Climate Change, Nature, vol. 8(7), pages 588-593, July.

    Cited by:

    1. William Oman & Romain Svartzman, 2021. "What Justifies Sustainable Finance Measures? Financial-Economic Interactions and Possible Implications for Policymakers," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 22(03), pages 03-11, May.
    2. Miriam Breitenstein & Carl-Philipp Anke & Duc Khuong Nguyen & Thomas Walther, 2022. "Stranded Asset Risk and Political Uncertainty: The Impact of the Coal Phase-Out on the German Coal Industry," The Energy Journal, , vol. 43(5), pages 27-50, September.
    3. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni & Tania Treibich, 2021. "Three green financial policies to address climate risks," Post-Print hal-04103920, HAL.
    4. Frank W. Geels & Jonatan Pinkse & Dimitri Zenghelis, 2021. "Productivity opportunities and risks in a transformative,low-carbon and digital age," Working Papers 009, The Productivity Institute.
    5. Mo, Jianlei & Cui, Lianbiao & Duan, Hongbo, 2021. "Quantifying the implied risk for newly-built coal plant to become stranded asset by carbon pricing," Energy Economics, Elsevier, vol. 99(C).
    6. Angelika von Dulong, 2023. "Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. In, Soh Young & Manav, Berk & Venereau, Clothilde M.A. & Cruz R., Luis Enrique & Weyant, John P., 2022. "Climate-related financial risk assessment on energy infrastructure investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Yannis Dafermos & Maria Nikolaidi, 2019. "Fiscal policy and ecological sustainability: A post-Keynesian perspective," Working Papers PKWP1912, Post Keynesian Economics Society (PKES).
    9. Claudia Kemfert & Fabian Präger & Isabell Braunger & Franziska M. Hoffart & Hanna Brauers, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," Nature Energy, Nature, vol. 7(7), pages 582-587, July.
    10. Diluiso, Francesca & Annicchiarico, Barbara & Kalkuhl, Matthias & Minx, Jan C., 2021. "Climate actions and macro-financial stability: The role of central banks," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    11. Yu, Zhongjue & Geng, Yong & Calzadilla, Alvaro & Bleischwitz, Raimund, 2022. "China's unconventional carbon emissions trading market: The impact of a rate-based cap in the power generation sector," Energy, Elsevier, vol. 255(C).
    12. Verrier, Brunilde & Strachan, Neil, 2024. "Sunset and sunrise business strategies shaping national energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    13. Hickey, Conor & O'Brien, John & Caldecott, Ben & McInerney, Celine & Ó Gallachóir, Brian, 2021. "Can European electric utilities manage asset impairments arising from net zero carbon targets?," Journal of Corporate Finance, Elsevier, vol. 70(C).
    14. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    15. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," SciencePo Working papers Main hal-04096135, HAL.
    16. J. Rickman & M. Falkenberg & S. Kothari & F. Larosa & M. Grubb & N. Ameli, 2024. "The challenge of phasing-out fossil fuel finance in the banking sector," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Manfred Kircher, 2019. "Bioeconomy: Markets, Implications, and Investment Opportunities," Economies, MDPI, vol. 7(3), pages 1-36, July.
    18. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    19. Donnelly, David & Fricaudet, Marie & Ameli, Nadia, 2023. "“Accelerating institutional funding of low-carbon investment: The potential for an investment emissions intensity tax”," Ecological Economics, Elsevier, vol. 207(C).
    20. Gregor Semieniuk & Emanuele Campiglio & Jean-Francois Mercure & Ulrich Volz & Neil R. Edwards, 2020. "Low-carbon transition risks for finance," Working Papers 233, Department of Economics, SOAS University of London, UK.
    21. Guillermo MONTT & Kirsten S. WIEBE & Marek HARSDORFF & Moana SIMAS & Antoine BONNET & Richard WOOD, 2018. "Does climate action destroy jobs? An assessment of the employment implications of the 2‐degree goal," International Labour Review, International Labour Organization, vol. 157(4), pages 519-556, December.
    22. Irene Monasterolo & Nepomuk Dunz & Andrea Mazzocchetti & Régis Gourdel, 2022. "Derisking the low-carbon transition: investors’ reaction to climate policies, decarbonization and distributive effects," Review of Evolutionary Political Economy, Springer, vol. 3(1), pages 31-71, April.
    23. Francesco Macheda, 2022. "Industrial Policies and State-Owned Enterprises: The Foundations of China’s Path Towards Decarbonization," L'industria, Società editrice il Mulino, issue 4, pages 581-619.
    24. Chester, D. & Lynch, C. & Szerszynski, B. & Mercure, J.-F. & Jarvis, A., 2024. "Heterogeneous capital stocks and economic inertia in the US economy," Ecological Economics, Elsevier, vol. 217(C).
    25. Cao, R. & Huang, G.H. & Chen, J.P. & Li, Y.P. & He, C.Y., 2021. "A chance-constrained urban agglomeration energy model for cooperative carbon emission management," Energy, Elsevier, vol. 223(C).
    26. Patrick Gruning & Zeynep Kantur, 2023. "Stranded Capital in Production Networks: Implications for the Economy of the Euro Area," Working Papers 2023/06, Latvijas Banka.
    27. Chiaramonte, Laura & Dreassi, Alberto & Goodell, John W. & Paltrinieri, Andrea & Piserà, Stefano, 2024. "Banks’ environmental policies and banks’ financial stability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    28. Flora, Maria & Tankov, Peter, 2023. "Green investment and asset stranding under transition scenario uncertainty," Energy Economics, Elsevier, vol. 124(C).
    29. Antoine GODIN & Louison CAHEN-FOUROT & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT & Stefan TRSEK, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Working Paper 4094e3ee-0cf8-4a0e-861f-a, Agence française de développement.
    30. Srivastav, Sugandha & Rafaty, Ryan, 2021. "Five Worlds of Political Strategy in the Climate Movement," INET Oxford Working Papers 2021-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    31. Simshauser, Paul & Akimov, Alexandr, 2019. "Regulated electricity networks, investment mistakes in retrospect and stranded assets under uncertainty," Energy Economics, Elsevier, vol. 81(C), pages 117-133.
    32. Bekkers, Eddy & Yilmaz, Ayse Nihal & Bacchetta, Marc & Ferrero, Mateo & Jhunjhunwala, Kirti & Métivier, Jeanne & Okogu, Bright E. & Ramos, Daniel & Tresa, Enxhi & Xu, Ankai, 2024. "A global framework for climate mitigation policies: A technical contribution to the discussion on carbon pricing and equivalent policies in open economies," WTO Staff Working Papers ERSD-2024-03, World Trade Organization (WTO), Economic Research and Statistics Division.
    33. Beirne, John & Renzhi, Nuobu & Volz, Ulrich, 2020. "Feeling the Heat: Climate Risks and the Cost of Sovereign Borrowing," ADBI Working Papers 1160, Asian Development Bank Institute.
    34. Mihalyi, David, 2020. "The Long Road to First Oil," MPRA Paper 103725, University Library of Munich, Germany.
    35. Francesca Diluiso & Barbara Annicchiarico & Matthias Kalkuhl & Jan C. Minx, 2020. "Climate Actions and Stranded Assets: The Role of Financial Regulation and Monetary Policy," CEIS Research Paper 501, Tor Vergata University, CEIS, revised 22 Jul 2020.
    36. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2022. "External carbon costs and internal carbon pricing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    37. Antoine GODIN & Paul HADJI-LAZARO, 2020. "Demand-induced transition risks: A systemic approach applied to South Africa," Working Paper 1ec2dacf-58b9-4235-8d35-4, Agence française de développement.
    38. Shimbar, Ali, 2021. "Environment-related stranded assets: What does the market think about the impact of collective climate action on the value of fossil fuel stocks?," Energy Economics, Elsevier, vol. 103(C).
    39. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," World Development, Elsevier, vol. 130(C).
    40. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    41. Louis Daumas, 2021. "Should we fear transition risks - A review of the applied literature," Working Papers 2021.05, FAERE - French Association of Environmental and Resource Economists.
    42. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    43. Andrea Jacob & Martin Nerlinger, 2021. "Investors’ Delight? Climate Risk in Stock Valuation during COVID-19 and Beyond," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    44. Eric Jondeau & Benoit Mojon & Cyril Monnet, 2021. "Greening (runnable) brown assets with a liquidity backstop," BIS Working Papers 929, Bank for International Settlements.
    45. Francesco Lamperti & Andrea Roventini, 2022. "Beyond climate economics orthodoxy: impacts and policies in the agent-based integrated-assessment DSK model," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 19(3), pages 357-380, December.
    46. Rempel, Arthur & Gupta, Joyeeta, 2021. "Fossil fuels, stranded assets and COVID-19: Imagining an inclusive & transformative recovery," World Development, Elsevier, vol. 146(C).
    47. Berg, Tobias & Carletti, Elena & Claessens, Stijn & Krahnen, Jan Pieter & Monasterolo, Irene & Pagano, Marco, 2023. "Climate regulation and financial risk: The challenge of policy uncertainty," SAFE Policy Letters 100, Leibniz Institute for Financial Research SAFE.
    48. Fan, Jing-Li & Li, Zezheng & Li, Kai & Zhang, Xian, 2022. "Modelling plant-level abatement costs and effects of incentive policies for coal-fired power generation retrofitted with CCUS," Energy Policy, Elsevier, vol. 165(C).
    49. Don Grant & Tyler Hansen & Andrew Jorgenson & Wesley Longhofer, 2024. "A worldwide analysis of stranded fossil fuel assets’ impact on power plants’ CO2 emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    50. Simola, Heli, 2020. "Climate change and the Russian economy," BOFIT Policy Briefs 11/2020, Bank of Finland Institute for Emerging Economies (BOFIT).
    51. Shih, Hsiu-Ching & Chiang, Chia-Yun & Lai, Hsin-Chih & Hsiao, Min-Chuan & Chen, Li-Heng & Ma, Hwong-wen, 2023. "Assessing the nexus of electric vehicle and energy policies on health risks," Energy, Elsevier, vol. 282(C).
    52. Fan, Jing-Li & Li, Zezheng & Ding, Zixia & Li, Kai & Zhang, Xian, 2023. "Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models," Energy Economics, Elsevier, vol. 126(C).
    53. de Moura, Fernanda Senra & Barbrook-Johnson, Peter, 2022. "Using data-driven systems mapping to contextualise complexity economics insights," INET Oxford Working Papers 2022-27, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    54. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    55. Vicknair, David & Tansey, Michael & O'Brien, Thomas E., 2022. "Measuring fossil fuel reserves: A simulation and review of the U.S. Securities and Exchange Commission approach," Resources Policy, Elsevier, vol. 79(C).
    56. Dunz, Nepomuk & Naqvi, Asjad & Monasterolo, Irene, 2021. "Climate sentiments, transition risk, and financial stability in a stock-flow consistent model," Journal of Financial Stability, Elsevier, vol. 54(C).
    57. Pérez-Martínez, P.J. & Miranda, R.M. & Andrade, M.F., 2020. "Freight road transport analysis in the metro São Paulo: Logistical activities and CO2 emissions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 16-33.
    58. Sugandha Srivastav & Ryan Rafaty, 2023. "Political Strategies to Overcome Climate Policy Obstructionism," Papers 2304.14960, arXiv.org.
    59. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.
    60. Pegels, Anna & Altenburg, Tilman, 2020. "Latecomer development in a “greening” world: Introduction to the Special Issue," World Development, Elsevier, vol. 135(C).
    61. Jonathan Doh & Pawan Budhwar & Geoffrey Wood, 2021. "Long-term energy transitions and international business: Concepts, theory, methods, and a research agenda," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(5), pages 951-970, July.
    62. Monasterolo, Irene & de Angelis, Luca, 2020. "Blind to carbon risk? An analysis of stock market reaction to the Paris Agreement," Ecological Economics, Elsevier, vol. 170(C).
    63. In, Soh Young & Weyant, John P. & Manav, Berk, 2022. "Pricing climate-related risks of energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    64. Hansen, T.A., 2022. "Stranded assets and reduced profits: Analyzing the economic underpinnings of the fossil fuel industry's resistance to climate stabilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    65. Peszko,Grzegorz & Van Der Mensbrugghe,Dominique & Golub,Alexander Alexandrovich, 2020. "Diversification and Cooperation Strategies in a Decarbonizing World," Policy Research Working Paper Series 9315, The World Bank.
    66. Yonatan Strauch & Truzaar Dordi & Angela Carter, 2020. "Constraining fossil fuels based on 2 °C carbon budgets: the rapid adoption of a transformative concept in politics and finance," Climatic Change, Springer, vol. 160(2), pages 181-201, May.

  20. Terry Barker & Eva Alexandri & Jean-Francois Mercure & Yuki Ogawa & Hector Pollitt, 2016. "GDP and employment effects of policies to close the 2020 emissions gap," Climate Policy, Taylor & Francis Journals, vol. 16(4), pages 393-414, May.

    Cited by:

    1. Augustin Danneaux & Thomas Le Gallic & Julien Lefèvre, 2023. "Employment Implications of Transitioning to Net Zero: Revealing Transition Risks through Downscaling," Post-Print hal-04477711, HAL.
    2. Francesco Vona, 2019. "Job losses and political acceptability of climate policies: why the ‘job-killing’ argument is so persistent and how to overturn it," Climate Policy, Taylor & Francis Journals, vol. 19(4), pages 524-532, April.
    3. Ayami Hayashi & Fuminori Sano & Takashi Homma & Keigo Akimoto, 2023. "Mitigating trade-offs between global food access and net-zero emissions: the potential contribution of direct air carbon capture and storage," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    4. Sikkema, Richard & Proskurina, Svetlana & Banja, Manjola & Vakkilainen, Esa, 2021. "How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy- and forestry sectors?," Renewable Energy, Elsevier, vol. 165(P1), pages 758-772.
    5. Thomas Le Gallic & Augustin Danneaux & Julien Lefèvre, 2023. "Employment Implication of Coal Phase-Out: Revealing Transition Risks through Downscaling," Post-Print hal-04477762, HAL.
    6. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    7. Maxim, Maruf Rahman, 2019. "Environmental fiscal reform and the possibility of triple dividend in European and non-European countries: evidence from a meta-regression analysis," MPRA Paper 100038, University Library of Munich, Germany.
    8. Paola Rocchi & José Manuel Rueda-Cantuche & Alicia Boyano & Alejandro Villanueva, 2019. "Macroeconomic Effects of EU Energy Efficiency Regulations on Household Dishwashers, Washing Machines and Washer Dryers," Energies, MDPI, vol. 12(22), pages 1-21, November.
    9. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.
    10. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    11. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    12. Nicola Campigotto & Marco Catola & Andrè Cieplinksi & Simone D'Alessandro & Tiziano Distefano & Pietro Guarnieri & Till Heydenreich, 2024. "Scenario discovery for a just low-carbon transition," Discussion Papers 2024/304, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    13. Alexandri, Eva & Antón, José-Ignacio & Lewney, Richard, 2024. "The impact of climate change mitigation policies on European labour markets," Ecological Economics, Elsevier, vol. 216(C).

  21. Jean-François Mercure, 2015. "An age structured demographic theory of technological change," Journal of Evolutionary Economics, Springer, vol. 25(4), pages 787-820, September.
    See citations under working paper version above.
  22. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    See citations under working paper version above.
  23. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    See citations under working paper version above.
  24. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.

    Cited by:

    1. Pim Vercoulen & Soocheol Lee & Xu Han & Wendan Zhang & Yongsung Cho & Jun Pang, 2023. "Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel," Energies, MDPI, vol. 16(11), pages 1-24, June.
    2. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    3. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    4. Christian Schoder & Remzi Baris Tercioglu, 2024. "A climate-fiscal policy mix to achieve Türkiye’s net-zero ambition under feasibility constraints," European Journal of Economics and Economic Policies: Intervention, Edward Elgar Publishing, vol. 21(2), pages 331-359, April.
    5. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    6. Cahen-Fourot, Louison & Campiglio, Emanuele & Daumas, Louis & Miess, Michael Gregor & Yardley, Andrew, 2023. "Stranding ahoy? Heterogeneous transition beliefs and capital investment choices," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 535-567.
    7. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    8. Hu, Xiurong & Pollitt, Hector & Pirie, Jamie & Mercure, Jean-Francois & Liu, Junfeng & Meng, Jing & Tao, Shu, 2020. "The impacts of the trade liberalization of environmental goods on power system and CO2 emissions," Energy Policy, Elsevier, vol. 140(C).
    9. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    10. Knobloch, Florian & Pollitt, Hector & Chewpreecha, Unnada & Lewney, Richard & Huijbregts, Mark A.J. & Mercure, Jean-Francois, 2021. "FTT:Heat — A simulation model for technological change in the European residential heating sector," Energy Policy, Elsevier, vol. 153(C).
    11. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    12. Mercure, Jean-François, 2018. "Fashion, fads and the popularity of choices: Micro-foundations for diffusion consumer theory," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 194-207.
    13. Pollitt, Hector & Neuhoff, Karsten & Lin, Xinru, 2020. "The impact of implementing a consumption charge on carbon-intensive materials in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(sup1), pages 74-89.
    14. Aileen Lam & Soocheol Lee & Jean-François Mercure & Yongsung Cho & Chun-Hsu Lin & Hector Pollitt & Unnada Chewpreecha & Sophie Billington, 2018. "Policies and Predictions for a Low-Carbon Transition by 2050 in Passenger Vehicles in East Asia: Based on an Analysis Using the E3ME-FTT Model," Sustainability, MDPI, vol. 10(5), pages 1-32, May.
    15. Jean-Francois Mercure & Pablo Salas, 2013. "An assessment of energy resources for global decarbonisation," 4CMR Working Paper Series 002, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    16. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    17. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    18. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    19. Hartvig, Áron Dénes & Kiss-Dobronyi, Bence & Kotek, Péter & Takácsné Tóth, Borbála & Gutzianas, Ioannis & Zareczky, András Zsombor, 2024. "The economic and energy security implications of the Russian energy weapon," Energy, Elsevier, vol. 294(C).
    20. Cordes, Christian & Schwesinger, Georg, 2014. "Technological diffusion and preference learning in the world of Homo sustinens: The challenges for politics," Ecological Economics, Elsevier, vol. 97(C), pages 191-200.
    21. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    22. H. Pollitt & J. -F. Mercure, 2015. "The role of money and the financial sector in energy-economy models used for assessing climate policy," Papers 1512.02912, arXiv.org.
    23. J. -F. Mercure, 2013. "An age structured demographic theory of technological change," Papers 1304.3602, arXiv.org, revised Nov 2014.
    24. Hafner, Sarah & Anger-Kraavi, Annela & Monasterolo, Irene & Jones, Aled, 2020. "Emergence of New Economics Energy Transition Models: A Review," Ecological Economics, Elsevier, vol. 177(C).
    25. Soocheol Lee & Unnada Chewpreecha & Hector Pollitt & Satoshi Kojima, 2018. "An economic assessment of carbon tax reform to meet Japan’s NDC target under different nuclear assumptions using the E3ME model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(2), pages 411-429, April.
    26. Jean-Francois Mercure & Pablo Salas, 2012. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Papers 1209.0708, arXiv.org, revised Jul 2013.
    27. Shih, Hsiu-Ching & Chiang, Chia-Yun & Lai, Hsin-Chih & Hsiao, Min-Chuan & Chen, Li-Heng & Ma, Hwong-wen, 2023. "Assessing the nexus of electric vehicle and energy policies on health risks," Energy, Elsevier, vol. 282(C).
    28. Bergesen, Joseph D. & Suh, Sangwon, 2016. "A framework for technological learning in the supply chain: A case study on CdTe photovoltaics," Applied Energy, Elsevier, vol. 169(C), pages 721-728.
    29. Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    30. Alexandri, Eva & Antón, José-Ignacio & Lewney, Richard, 2024. "The impact of climate change mitigation policies on European labour markets," Ecological Economics, Elsevier, vol. 216(C).
    31. Pablo Salas, 2013. "Literature Review of Energy-Economics Models, Regarding Technological Change and Uncertainty," 4CMR Working Paper Series 003, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
    32. Jean-Francois Mercure, 2012. "On the changeover timescales of technology transitions and induced efficiency changes: an overarching theory," Papers 1209.0424, arXiv.org.
    33. James Holehouse & Hector Pollitt, 2021. "Non-equilibrium time-dependent solution to discrete choice with social interactions," Papers 2109.09633, arXiv.org, revised Jan 2022.
    34. Nieto, Jaime & Pollitt, Hector & Brockway, Paul E. & Clements, Lucy & Sakai, Marco & Barrett, John, 2021. "Socio-macroeconomic impacts of implementing different post-Brexit UK energy reduction targets to 2030," Energy Policy, Elsevier, vol. 158(C).

  25. Mercure, Jean-François & Salas, Pablo, 2012. "An assessement of global energy resource economic potentials," Energy, Elsevier, vol. 46(1), pages 322-336.
    See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.