IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1650-d756336.html
   My bibliography  Save this article

Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level

Author

Listed:
  • Clare Hanmer

    (Tyndall Centre for Climate Change Research, University of East Anglia (UEA), Norwich NR4 7TJ, UK)

  • Charlie Wilson

    (Tyndall Centre for Climate Change Research, University of East Anglia (UEA), Norwich NR4 7TJ, UK
    International Institute for Applied Systems Analysis (IIASA), A-2361 Luxemburg, Austria)

  • Oreane Y. Edelenbosch

    (Faculty of Geosciences, Copernicus Institute of Sustainable Development, Utrecht University, 3584 CS Utrecht, The Netherlands)

  • Detlef P. van Vuuren

    (Faculty of Geosciences, Copernicus Institute of Sustainable Development, Utrecht University, 3584 CS Utrecht, The Netherlands
    PBL Netherlands Environmental Assessment Agency, 2594 AV The Hague, The Netherlands)

Abstract

Countries’ emission reduction commitments under the Paris Agreement have significant implications for lifestyles. National planning to meet emission targets is based on modelling and analysis specific to individual countries, whereas global integrated assessment models provide scenario projections in a consistent framework but with less granular output. We contribute a novel methodology for translating global scenarios into lifestyle implications at the national and household levels, which is generalisable to any service or country and versatile to work with any model or scenario. Our 5Ds method post-processes Integrated Assessment Model projections of sectoral energy demand for the global region to derive energy-service-specific lifestyle change at the household level. We illustrate the methodology for two energy services (mobility, heating) in two countries (UK, Sweden), showing how effort to reach zero carbon targets varies between countries and households. Our method creates an analytical bridge between global model output and information that can be used at national and local levels, making clear the lifestyle implications of climate targets.

Suggested Citation

  • Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1650-:d:756336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Lee Schipper & Calanit Saenger & Anant Sudardshan, 2011. "Transport and Carbon Emissions in the United States: The Long View," Energies, MDPI, vol. 4(4), pages 1-19, March.
    3. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    4. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    5. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    6. Gustavo A. Marrero & Francisco J. Ramos-Real, 2013. "Activity Sectors and Energy Intensity: Decomposition Analysis and Policy Implications for European Countries (1991–2005)," Energies, MDPI, vol. 6(5), pages 1-20, May.
    7. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    8. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    9. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Publisher Correction: Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(4), pages 349-349, April.
    10. Charlie Wilson & Céline Guivarch & Elmar Kriegler & Bas Ruijven & Detlef P. Vuuren & Volker Krey & Valeria Jana Schwanitz & Erica L. Thompson, 2021. "Evaluating process-based integrated assessment models of climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-22, May.
    11. Cristina Peñasco & Laura Díaz Anadón & Elena Verdolini, 2021. "Systematic review of the outcomes and trade-offs of ten types of decarbonization policy instruments," Nature Climate Change, Nature, vol. 11(3), pages 257-265, March.
    12. Brand, Christian & Tran, Martino & Anable, Jillian, 2012. "The UK transport carbon model: An integrated life cycle approach to explore low carbon futures," Energy Policy, Elsevier, vol. 41(C), pages 107-124.
    13. Strachan, Neil, 2011. "UK energy policy ambition and UK energy modelling--fit for purpose?," Energy Policy, Elsevier, vol. 39(3), pages 1037-1040, March.
    14. Krey, Volker & O'Neill, Brian C. & van Ruijven, Bas & Chaturvedi, Vaibhav & Daioglou, Vassilis & Eom, Jiyong & Jiang, Leiwen & Nagai, Yu & Pachauri, Shonali & Ren, Xiaolin, 2012. "Urban and rural energy use and carbon dioxide emissions in Asia," Energy Economics, Elsevier, vol. 34(S3), pages 272-283.
    15. Steven K. Rose & Richard Richels & Geoffrey Blanford & Thomas Rutherford, 2017. "The Paris Agreement and next steps in limiting global warming," Climatic Change, Springer, vol. 142(1), pages 255-270, May.
    16. Sovacool, Benjamin K. & Burke, Matthew & Baker, Lucy & Kotikalapudi, Chaitanya Kumar & Wlokas, Holle, 2017. "New frontiers and conceptual frameworks for energy justice," Energy Policy, Elsevier, vol. 105(C), pages 677-691.
    17. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    18. Roger Fouquet, 2016. "Path dependence in energy systems and economic development," Nature Energy, Nature, vol. 1(8), pages 1-5, August.
    19. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    20. Edelenbosch, O.Y. & van Vuuren, D.P. & Blok, K. & Calvin, K. & Fujimori, S., 2020. "Mitigating energy demand sector emissions: The integrated modelling perspective," Applied Energy, Elsevier, vol. 261(C).
    21. Yannick Oswald & Anne Owen & Julia K. Steinberger, 2020. "Large inequality in international and intranational energy footprints between income groups and across consumption categories," Nature Energy, Nature, vol. 5(3), pages 231-239, March.
    22. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    23. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    24. Parrish, Bryony & Hielscher, Sabine & Foxon, Timothy J., 2021. "Consumers or users? The impact of user learning about smart hybrid heat pumps on policy trajectories for heat decarbonisation," Energy Policy, Elsevier, vol. 148(PB).
    25. Catherine Cherry & Kate Scott & John Barrett & Nick Pidgeon, 2018. "Public acceptance of resource-efficiency strategies to mitigate climate change," Nature Climate Change, Nature, vol. 8(11), pages 1007-1012, November.
    26. de Boer, Harmen Sytze (H.S.) & van Vuuren, Detlef (D.P.), 2017. "Representation of variable renewable energy sources in TIMER, an aggregated energy system simulation model," Energy Economics, Elsevier, vol. 64(C), pages 600-611.
    27. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    28. Andres Walliser & Nicholas Rajkovich & John Forester & Carley Friesen & Björn Malbert & Henrik Nolmark & Jo Williams & Stephen Wheeler & Robert Segar & Michael Utzinger & Steve Swenson & Ignacio Grand, 2012. "Exploring the Challenges of Environmental Planning and Green Design: Cases from Europe and the USARenovating to Passive Housing in the Swedish Million ProgrammeRegulative, facilitative and strategic c," Planning Theory & Practice, Taylor & Francis Journals, vol. 13(1), pages 113-174.
    29. Roberto Schaeffer & V. Bosetti & E. Kriegler & K. Riahi & D. Vuuren, 2020. "Climatic change: CD-Links special issue on national low-carbon development pathways," Climatic Change, Springer, vol. 162(4), pages 1779-1785, October.
    30. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    31. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    32. Fragkos, Panagiotis & Laura van Soest, Heleen & Schaeffer, Roberto & Reedman, Luke & Köberle, Alexandre C. & Macaluso, Nick & Evangelopoulou, Stavroula & De Vita, Alessia & Sha, Fu & Qimin, Chai & Kej, 2021. "Energy system transitions and low-carbon pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States," Energy, Elsevier, vol. 216(C).
    33. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    34. Matthias Weitzel & Toon Vandyck & Kimon Keramidas & Markus Amann & Pantelis Capros & Michel den Elzen & Stefan Frank & Stéphane Tchung-Ming & Ana Díaz Vázquez & Bert Saveyn, 2019. "Model-based assessments for long-term climate strategies," Nature Climate Change, Nature, vol. 9(5), pages 345-347, May.
    35. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mei Shang & Xinxin Shen & Daoyan Guo, 2024. "Analysis of Green Transformation and Driving Factors of Household Consumption Patterns in China from the Perspective of Carbon Emissions," Sustainability, MDPI, vol. 16(2), pages 1-34, January.
    2. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    3. Dolf Gielen, 2022. "Energy Planning," Energies, MDPI, vol. 15(7), pages 1-6, April.
    4. Andreas Andreou & Panagiotis Fragkos & Theofano Fotiou & Faidra Filippidou, 2022. "Assessing Lifestyle Transformations and Their Systemic Effects in Energy-System and Integrated Assessment Models: A Review of Current Methods and Data," Energies, MDPI, vol. 15(14), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Mingyu & Ding, Qun & Cai, Wenjia & Wang, Can, 2022. "The exploration of joint carbon mitigation actions between demand- and supply-side for specific household consumption behaviors — A case study in China," Applied Energy, Elsevier, vol. 324(C).
    2. van Ruijven, Bas J. & O’Neill, Brian C. & Chateau, Jean, 2015. "Methods for including income distribution in global CGE models for long-term climate change research," Energy Economics, Elsevier, vol. 51(C), pages 530-543.
    3. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    4. Sun, Shuyu & Tong, Kangkang, 2024. "Rural-urban inequality in energy use sufficiency and efficiency during a rapid urbanization period," Applied Energy, Elsevier, vol. 364(C).
    5. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    6. De Cian, Enrica & Dasgupta, Shouro & Hof, Andries F. & van Sluisveld, Mariësse A.E. & Köhler, Jonathan & Pfluger, Benjamin & van Vuuren, Detlef P., 2020. "Actors, decision-making, and institutions in quantitative system modelling," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    7. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    8. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Edelenbosch, OY & Rovelli, D & Levesque, A & Marangoni, G & Tavoni, M, 2021. "Long term, cross-country effects of buildings insulation policies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    10. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. O’ Mahony, Tadhg & Zhou, Peng & Sweeney, John, 2012. "The driving forces of change in energy-related CO2 emissions in Ireland: A multi-sectoral decomposition from 1990 to 2007," Energy Policy, Elsevier, vol. 44(C), pages 256-267.
    12. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    13. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
    14. Bäuerle, Max Juri, 2022. "Striving for low-carbon lifestyles: An analysis of the mobility patterns of different urban household types with regard to emissions reductions in a real-world lab experiment in Berlin," Discussion Papers, Research Group Digital Mobility and Social Differentiation SP III 2022-601, WZB Berlin Social Science Center.
    15. Lara P. Clark & Samuel Tabory & Kangkang Tong & Joseph L. Servadio & Kelsey Kappler & Corey Kewei Xu & Abiola S. Lawal & Peter Wiringa & Len Kne & Richard Feiock & Julian D. Marshall & Armistead Russe, 2022. "A data framework for assessing social inequality and equity in multi‐sector social, ecological, infrastructural urban systems: Focus on fine‐spatial scales," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 145-163, February.
    16. Daioglou, Vassilis & Mikropoulos, Efstratios & Gernaat, David & van Vuuren, Detlef P., 2022. "Efficiency improvement and technology choice for energy and emission reductions of the residential sector," Energy, Elsevier, vol. 243(C).
    17. Gernaat, David E.H.J. & de Boer, Harmen-Sytze & Dammeier, Louise C. & van Vuuren, Detlef P., 2020. "The role of residential rooftop photovoltaic in long-term energy and climate scenarios," Applied Energy, Elsevier, vol. 279(C).
    18. Löschel, Andreas & Pothen, Frank & Schymura, Michael, 2015. "Peeling the onion: Analyzing aggregate, national and sectoral energy intensity in the European Union," Energy Economics, Elsevier, vol. 52(S1), pages 63-75.
    19. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    20. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1650-:d:756336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.