IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i10p2584-d360339.html
   My bibliography  Save this article

Modeling the Total Cost of Ownership of an Electric Car Using a Residential Photovoltaic Generator and a Battery Storage Unit—An Italian Case Study

Author

Listed:
  • Mariangela Scorrano

    (Department of Economics, Business, Mathematics and Statistics “Bruno de Finetti” (DEAMS), Trieste University, 34127 Trieste, Italy)

  • Romeo Danielis

    (Department of Economics, Business, Mathematics and Statistics “Bruno de Finetti” (DEAMS), Trieste University, 34127 Trieste, Italy)

  • Stefano Pastore

    (Department of Engineering and Architecture, Trieste University, 34127 Trieste, Italy)

  • Vanni Lughi

    (Department of Engineering and Architecture, Trieste University, 34127 Trieste, Italy)

  • Alessandro Massi Pavan

    (Department of Engineering and Architecture, Trieste University, 34127 Trieste, Italy)

Abstract

As electric vehicles gain acceptance, an increasing number of households consider the possibility of buying the bundle including an electric car, a photovoltaic system, and a battery storage unit. Apart from the attractive environmental benefits, a relevant uncertainty concerns the economic convenience of such a choice. Since many variables play a role, we set up a total cost of ownership model to evaluate whether, and under which conditions, the bundle is cost-competitive relative to buying an electric car only (and charging it from the electrical grid) or a conventional combustion engine car. By combining, for the first time, such an economic model with an energy model and a driving profile model, we find that the degree of electricity self-production used to charge the electric car might be very high, varying from 90% to 62%, depending on the annual distance traveled. The cost of such electricity varies widely and can be lower than the grid electricity price when fiscal incentives are available and for long annual distances traveled. A smart charging practice based on both economic factors and weather forecast can greatly enhance self-sufficiency, i.e., independence from the electrical grid. We estimate that, given the current Italian financial incentives, 10,000 km/year are needed to make the electric car cost-competitive with respect to an equivalent petrol-fueled one. Such threshold increases to more than 25,000 km/year if financial incentives are removed.

Suggested Citation

  • Mariangela Scorrano & Romeo Danielis & Stefano Pastore & Vanni Lughi & Alessandro Massi Pavan, 2020. "Modeling the Total Cost of Ownership of an Electric Car Using a Residential Photovoltaic Generator and a Battery Storage Unit—An Italian Case Study," Energies, MDPI, vol. 13(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2584-:d:360339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/10/2584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/10/2584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rusich, Andrea & Danielis, Romeo, 2015. "Total cost of ownership, social lifecycle cost and energy consumption of various automotive technologies in Italy," Research in Transportation Economics, Elsevier, vol. 50(C), pages 3-16.
    2. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Dissecting the total cost of ownership of fully electric cars in Italy: The impact of annual distance travelled, home charging and urban driving," Research in Transportation Economics, Elsevier, vol. 80(C).
    3. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    4. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    5. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    6. Delmas, Magali A. & Kahn, Matthew E. & Locke, Stephen L., 2017. "The private and social consequences of purchasing an electric vehicle and solar panels: Evidence from California," Research in Economics, Elsevier, vol. 71(2), pages 225-235.
    7. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    8. Priessner, Alfons & Hampl, Nina, 2020. "Can product bundling increase the joint adoption of electric vehicles, solar panels and battery storage? Explorative evidence from a choice-based conjoint study in Austria," Ecological Economics, Elsevier, vol. 167(C).
    9. Florian Knobloch & Steef V. Hanssen & Aileen Lam & Hector Pollitt & Pablo Salas & Unnada Chewpreecha & Mark A. J. Huijbregts & Jean-Francois Mercure, 2020. "Net emission reductions from electric cars and heat pumps in 59 world regions over time," Nature Sustainability, Nature, vol. 3(6), pages 437-447, June.
    10. Mazzeo, Domenico, 2019. "Nocturnal electric vehicle charging interacting with a residential photovoltaic-battery system: a 3E (energy, economic and environmental) analysis," Energy, Elsevier, vol. 168(C), pages 310-331.
    11. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    12. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    13. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    14. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 2.
    15. Zhao, Jiayun & Kucuksari, Sadik & Mazhari, Esfandyar & Son, Young-Jun, 2013. "Integrated analysis of high-penetration PV and PHEV with energy storage and demand response," Applied Energy, Elsevier, vol. 112(C), pages 35-51.
    16. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Mandating the use of the electric taxis: The case of Florence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 402-414.
    17. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 4.
    18. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 3.
    19. Danielis, Romeo & Giansoldati, Marco & Rotaris, Lucia, 2018. "A probabilistic total cost of ownership model to evaluate the current and future prospects of electric cars uptake in Italy," Energy Policy, Elsevier, vol. 119(C), pages 268-281.
    20. Editorial Article, 0. "The Information for Authors," Economics of Contemporary Russia, Regional Public Organization for Assistance to the Development of Institutions of the Department of Economics of the Russian Academy of Sciences, issue 1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romeo Danielis & Mariangela Scorrano & Alessandro Massi Pavan & Nicola Blasuttigh, 2023. "Simulating the Diffusion of Residential Rooftop Photovoltaic, Battery Storage Systems and Electric Cars in Italy. An Exploratory Study Combining a Discrete Choice and Agent-Based Modelling Approach," Energies, MDPI, vol. 16(1), pages 1-20, January.
    2. Giuseppe Barone & Giovanni Brusco & Daniele Menniti & Anna Pinnarelli & Gaetano Polizzi & Nicola Sorrentino & Pasquale Vizza & Alessandro Burgio, 2020. "How Smart Metering and Smart Charging may Help a Local Energy Community in Collective Self-Consumption in Presence of Electric Vehicles," Energies, MDPI, vol. 13(16), pages 1-18, August.
    3. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe, 2022. "The impact of a subsidized tax deduction on residential solar photovoltaic-battery energy storage systems," Utilities Policy, Elsevier, vol. 75(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kritana Prueksakorn & Cheng-Xu Piao & Hyunchul Ha & Taehyeung Kim, 2015. "Computational and Experimental Investigation for an Optimal Design of Industrial Windows to Allow Natural Ventilation during Wind-Driven Rain," Sustainability, MDPI, vol. 7(8), pages 1-22, August.
    2. Hualin Xie & Jinlang Zou & Hailing Jiang & Ning Zhang & Yongrok Choi, 2014. "Spatiotemporal Pattern and Driving Forces of Arable Land-Use Intensity in China: Toward Sustainable Land Management Using Emergy Analysis," Sustainability, MDPI, vol. 6(6), pages 1-17, May.
    3. Stephan E. Maurer & Andrei V. Potlogea, 2021. "Male‐biased Demand Shocks and Women's Labour Force Participation: Evidence from Large Oil Field Discoveries," Economica, London School of Economics and Political Science, vol. 88(349), pages 167-188, January.
    4. Tie Hua Zhou & Ling Wang & Keun Ho Ryu, 2015. "Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation," Sustainability, MDPI, vol. 7(5), pages 1-18, May.
    5. T. Karski, 2019. "Opinions and Controversies in Problem of The So-Called Idiopathic Scoliosis. Information About Etiology, New Classification and New Therapy," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 12(5), pages 9612-9616, January.
    6. Sung-Won Park & Sung-Yong Son, 2017. "Cost Analysis for a Hybrid Advanced Metering Infrastructure in Korea," Energies, MDPI, vol. 10(9), pages 1-18, September.
    7. Wesley Mendes-da-Silva, 2020. "What Makes an Article be More Cited?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 24(6), pages 507-513.
    8. Martin Valtierra-Rodriguez & Juan Pablo Amezquita-Sanchez & Arturo Garcia-Perez & David Camarena-Martinez, 2019. "Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors," Mathematics, MDPI, vol. 7(9), pages 1-19, August.
    9. Akca Yasar & Gokhan Ozer, 2016. "Determination the Factors that Affect the Use of Enterprise Resource Planning Information System through Technology Acceptance Model," International Journal of Business and Management, Canadian Center of Science and Education, vol. 11(10), pages 1-91, September.
    10. Julián Miranda & Angélica Flórez & Gustavo Ospina & Ciro Gamboa & Carlos Flórez & Miguel Altuve, 2020. "Proposal for a System Model for Offline Seismic Event Detection in Colombia," Future Internet, MDPI, vol. 12(12), pages 1-17, December.
    11. Wisdom Akpalu & Mintewab Bezabih, 2015. "Tenure Insecurity, Climate Variability and Renting out Decisions among Female Small-Holder Farmers in Ethiopia," Sustainability, MDPI, vol. 7(6), pages 1-16, June.
    12. Wei Chen & Shu-Yu Liu & Chih-Han Chen & Yi-Shan Lee, 2011. "Bounded Memory, Inertia, Sampling and Weighting Model for Market Entry Games," Games, MDPI, vol. 2(1), pages 1-13, March.
    13. David Harborth & Sebastian Pape, 2020. "Empirically Investigating Extraneous Influences on the “APCO” Model—Childhood Brand Nostalgia and the Positivity Bias," Future Internet, MDPI, vol. 12(12), pages 1-16, December.
    14. Ping Wang & Jie Wang & Guiwu Wei & Cun Wei, 2019. "Similarity Measures of q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications," Mathematics, MDPI, vol. 7(4), pages 1-23, April.
    15. Peterson, Willis L., 1973. "Publication Productivities Of U.S. Economics Department Graduates," Staff Papers 14105, University of Minnesota, Department of Applied Economics.
    16. Taeyeoun Roh & Yujin Jeong & Byungun Yoon, 2017. "Developing a Methodology of Structuring and Layering Technological Information in Patent Documents through Natural Language Processing," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    17. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    18. Vasilyeva, Olga, 2021. "Agro-food clusters in the Republic of Kazakhstan: assessment and prospects of development," Economic Consultant, Roman I. Ostapenko, vol. 34(2), pages 13-20.
    19. Chris Lytridis & Anna Lekova & Christos Bazinas & Michail Manios & Vassilis G. Kaburlasos, 2020. "WINkNN: Windowed Intervals’ Number kNN Classifier for Efficient Time-Series Applications," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    20. Richard J. Ciotola & Jay F. Martin & Juan M. Castańo & Jiyoung Lee & Frederick Michel, 2013. "Microbial Community Response to Seasonal Temperature Variation in a Small-Scale Anaerobic Digester," Energies, MDPI, vol. 6(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2584-:d:360339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.