IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i7d10.1007_s10668-020-00896-7.html
   My bibliography  Save this article

Fuel price control in Brazil: environmental impacts

Author

Listed:
  • Roberto Ivo da Rocha Lima Filho

    (Universidade Federal do Rio de Janeiro - UFRJ)

  • Thereza Cristina Nogueira de Aquino

    (Universidade Federal do Rio de Janeiro - UFRJ)

  • Adriano Marçal Nogueira Neto

    (Universidade Federal do Rio de Janeiro - UFRJ)

Abstract

This paper evaluates carbon dioxide (CO2) emission as a consequence of the intervention in the prices of oil and its substitute fuel, ethanol, in the transport sector. These studies cover price behavior in different phases of the period ranging from 2002 to 2016, when Brazil adopted interventionist policies that impacted the balance between fuel supply and demand and, consequently, the environment. The results of econometric models corroborate the increase in magnitude of CO2 emissions during the periods with government intervention in fuel prices, thereby indicating misalignment of the prices related to the sector, and, subsequently, given this price suppression that this intervention aggravated the inflation instead of reducing it. Our study estimated the effect of this government intervention through a multivariate regression and found that oil prices hugely contributed to the level of CO2 emissions, almost doubling right after January 2009 vis-à-vis 2016. This means that there was a significant increase of approximately 32% in the level of CO2 emissions during the aforementioned period. Had it not been so, the result could have been only 14% percentage points lower following the forecast of our pre-crisis regression.

Suggested Citation

  • Roberto Ivo da Rocha Lima Filho & Thereza Cristina Nogueira de Aquino & Adriano Marçal Nogueira Neto, 2021. "Fuel price control in Brazil: environmental impacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9811-9826, July.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-00896-7
    DOI: 10.1007/s10668-020-00896-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00896-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00896-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shah, Imran Hussain & Hiles, Charlie & Morley, Bruce, 2018. "How do oil prices, macroeconomic factors and policies affect the market for renewable energy?," Applied Energy, Elsevier, vol. 215(C), pages 87-97.
    2. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt & Binfield, Julian, 2017. "Complement or substitute: Ethanol’s uncertain relationship with gasoline under alternative petroleum price and policy scenarios," Applied Energy, Elsevier, vol. 191(C), pages 385-397.
    3. Almeida, Alexandre N. & Santos, Augusto S. & Halmenschlager, Vinícius & Gilio, Leandro & Diniz, Tiago B. & Ferreira, Alexandre A. S., 2016. "Flexible-fuel automobiles and CO2 emissions in Brazil: a semiparametric analysis using panel data," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235733, Agricultural and Applied Economics Association.
    4. Özbuğday, Fatih Cemil & Erbas, Bahar Celikkol, 2015. "How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis," Energy, Elsevier, vol. 82(C), pages 734-745.
    5. Mercure, Jean-François & Salas, Pablo, 2013. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Energy Policy, Elsevier, vol. 63(C), pages 469-483.
    6. Wills, William & La Rovere, Emilio Lèbre, 2010. "Light vehicle energy efficiency programs and their impact on Brazilian CO2 emissions," Energy Policy, Elsevier, vol. 38(11), pages 6453-6462, November.
    7. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    8. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuloğlu, Ayhan, 2017. "The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity," Energy, Elsevier, vol. 133(C), pages 242-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derick David Quintino & Heloisa Lee Burnquist & Paulo Jorge Silveira Ferreira, 2021. "Carbon Emissions and Brazilian Ethanol Prices: Are They Correlated? An Econophysics Study," Sustainability, MDPI, vol. 13(22), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urszula Gierałtowska & Roman Asyngier & Joanna Nakonieczny & Raufhon Salahodjaev, 2022. "Renewable Energy, Urbanization, and CO 2 Emissions: A Global Test," Energies, MDPI, vol. 15(9), pages 1-13, May.
    2. Hossain, Mohammad Razib & Dash, Devi Prasad & Das, Narasingha & Ullah, Ehsan & Hossain, Md. Emran, 2024. "Green energy transition in OECD region through the lens of economic complexity and environmental technology: A method of moments quantile regression perspective," Applied Energy, Elsevier, vol. 365(C).
    3. Tafadzwa Ruzive & Thando Mkhombo & Simbarashe Mhaka & Nomahlubi Mavikela & Andrew Phiri, 2019. "Electricity Intensity and Unemployment in South Africa: A Quantile Regression Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 31-40.
    4. Kazemzadeh, Emad & Fuinhas, José Alberto & Koengkan, Matheus & Shadmehri, Mohammad Taher Ahmadi, 2023. "Relationship between the share of renewable electricity consumption, economic complexity, financial development, and oil prices: A two-step club convergence and PVAR model approach," International Economics, Elsevier, vol. 173(C), pages 260-275.
    5. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    6. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
    7. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    8. Sahibzada, Irfan Ullah, 2023. "To what extent do sovereign rating actions affect global equity market sectors?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 240-261.
    9. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    10. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    11. Wang, Yuanping & Hou, Lingchun & Cai, Weiguang & Zhou, Zhaoyin & Bian, Jing, 2023. "Exploring the drivers and influencing mechanisms of urban household electricity consumption in China - Based on longitudinal data at the provincial level," Energy, Elsevier, vol. 273(C).
    12. Fotio, Hervé Kaffo & Adams, Samuel & Nkengfack, Hilaire & Poumie, Boker, 2023. "Achieving sustainable development goal 7 in Africa: Does globalization matter for electricity access, renewable energy consumption, and energy efficiency?," Utilities Policy, Elsevier, vol. 82(C).
    13. Johansson, R. & Meyer, S. & Whistance, J. & Thompson, W. & Debnath, D., 2020. "Greenhouse gas emission reduction and cost from the United States biofuels mandate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Ishaya Tambari & Pierre Failler, 2020. "Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns," Energies, MDPI, vol. 13(24), pages 1-21, December.
    15. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    16. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    17. Bright Akwasi Gyamfi & Asiedu B. Ampomah & Festus V. Bekun & Simplice A. Asongu, 2022. "Can information and communication technology and institutional quality help mitigate climate change in E7 economies? An environmental Kuznets curve extension," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-20, December.
    18. Xiaohua Sun & Danish Khan & Yubai Zheng, 2024. "Articulating the Role of Technological Innovation and Policy Uncertainty in Energy Efficiency: an Empirical Investigation," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 14597-14616, September.
    19. Shahnazi, Rouhollah & Dehghan Shabani, Zahra, 2020. "Do renewable energy production spillovers matter in the EU?," Renewable Energy, Elsevier, vol. 150(C), pages 786-796.
    20. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).

    More about this item

    Keywords

    CO2 emissions; Government intervention; Brazilian energy policy; Causality effect;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-00896-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.