IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04420572.html
   My bibliography  Save this paper

Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions

Author

Listed:
  • Ploy Achakulwisut
  • Peter Erickson
  • Céline Guivarch

    (CIRED - Centre International de Recherche sur l'Environnement et le Développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique)

  • Roberto Schaeffer
  • Elina Brutschin
  • Steve Pye

Abstract

The mitigation scenarios database of the Intergovernmental Panel on Climate Change's Sixth Assessment Report is an important resource for informing policymaking on energy transitions. However, there is a large variety of models, scenario designs, and resulting outputs. Here we analyse the scenarios consistent with limiting warming to 2 °C or below regarding the speed, trajectory, and feasibility of different fossil fuel reduction pathways. In scenarios limiting warming to 1.5 °C with no or limited overshoot, global coal, oil, and natural gas supply (intended for all uses) decline on average by 95%, 62%, and 42%, respectively, from 2020 to 2050, but the long-term role of gas is highly variable. Higher-gas pathways are enabled by higher carbon capture and storage (CCS) and carbon dioxide removal (CDR), but are likely associated with inadequate model representation of regional CO 2 storage capacity and technology adoption, diffusion, and path-dependencies. If CDR is constrained by limits derived from expert consensus, the respective modelled coal, oil, and gas reductions become 99%, 70%, and 84%. Our findings suggest the need to adopt unambiguous near- and long-term reduction benchmarks in coal, oil, and gas production and use alongside other climate mitigation targets.

Suggested Citation

  • Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Post-Print hal-04420572, HAL.
  • Handle: RePEc:hal:journl:hal-04420572
    DOI: 10.1038/s41467-023-41105-z
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Elina Brutschin & Felix Schenuit & Bas van Ruijven & Keywan Riahi, 2022. "Exploring Enablers for an Ambitious Coal Phaseout," Politics and Governance, Cogitatio Press, vol. 10(3), pages 200-212.
    2. Céline Guivarch & Thomas Gallic & Nico Bauer & Panagiotis Fragkos & Daniel Huppmann & Marc Jaxa-Rozen & Ilkka Keppo & Elmar Kriegler & Tamás Krisztin & Giacomo Marangoni & Steve Pye & Keywan Riahi & R, 2022. "Using large ensembles of climate change mitigation scenarios for robust insights," Nature Climate Change, Nature, vol. 12(5), pages 428-435, May.
    3. Longxiang Li & Francesca Dominici & Annelise J. Blomberg & Falco J. Bargagli-Stoffi & Joel D. Schwartz & Brent A. Coull & John D. Spengler & Yaguang Wei & Joy Lawrence & Petros Koutrakis, 2022. "Exposure to unconventional oil and gas development and all-cause mortality in Medicare beneficiaries," Nature Energy, Nature, vol. 7(2), pages 177-185, February.
    4. Richard Heede, 2014. "Tracing anthropogenic carbon dioxide and methane emissions to fossil fuel and cement producers, 1854–2010," Climatic Change, Springer, vol. 122(1), pages 229-241, January.
    5. Nicholas Stern & Joseph Stiglitz & Charlotte Taylor, 2022. "The economics of immense risk, urgent action and radical change: towards new approaches to the economics of climate change," Journal of Economic Methodology, Taylor & Francis Journals, vol. 29(3), pages 181-216, July.
    6. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    7. J. -F. Mercure & H. Pollitt & A. M. Bassi & J. E Vi~nuales & N. R. Edwards, 2015. "Modelling complex systems of heterogeneous agents to better design sustainability transitions policy," Papers 1506.07432, arXiv.org, revised Feb 2016.
    8. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    9. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    10. Dan Welsby & James Price & Steve Pye & Paul Ekins, 2021. "Unextractable fossil fuels in a 1.5 °C world," Nature, Nature, vol. 597(7875), pages 230-234, September.
    11. Gunnar Luderer & Robert C. Pietzcker & Samuel Carrara & Harmen-Sytze de Boer & Shinichiro Fujimori & Nils Johnson & Silvana Mima & Douglas Arent, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Post-Print hal-01515408, HAL.
    12. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    13. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
    14. Lorenz T. Keyßer & Manfred Lenzen, 2021. "1.5 °C degrowth scenarios suggest the need for new mitigation pathways," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    15. Sivan Kartha & Simon Caney & Navroz K. Dubash & Greg Muttitt, 2018. "Whose carbon is burnable? Equity considerations in the allocation of a “right to extract”," Climatic Change, Springer, vol. 150(1), pages 117-129, September.
    16. Greg Muttitt & Sivan Kartha, 2020. "Equity, climate justice and fossil fuel extraction: principles for a managed phase out," Climate Policy, Taylor & Francis Journals, vol. 20(8), pages 1024-1042, September.
    17. Keywan Riahi & Christoph Bertram & Daniel Huppmann & Joeri Rogelj & Valentina Bosetti & Anique-Marie Cabardos & Andre Deppermann & Laurent Drouet & Stefan Frank & Oliver Fricko & Shinichiro Fujimori &, 2021. "Cost and attainability of meeting stringent climate targets without overshoot," Nature Climate Change, Nature, vol. 11(12), pages 1063-1069, December.
    18. Mathijs Harmsen & Elmar Kriegler & Detlef van Vuuren & Kaj-Ivar van Der Wijst & Gunnar Luderer & Ryna Cui & Olivier Dessens & Laurent Drouet & Johannes Emmerling & Jennifer Morris & Florian Fosse & Di, 2021. "Integrated assessment model diagnostics: key indicators and model evolution," Post-Print hal-03216627, HAL.
    19. McGlade, Christophe & Pye, Steve & Ekins, Paul & Bradshaw, Michael & Watson, Jim, 2018. "The future role of natural gas in the UK: A bridge to nowhere?," Energy Policy, Elsevier, vol. 113(C), pages 454-465.
    20. Marc Jaxa-Rozen & Evelina Trutnevyte, 2021. "Sources of uncertainty in long-term global scenarios of solar photovoltaic technology," Nature Climate Change, Nature, vol. 11(3), pages 266-273, March.
    21. Daniel Huppmann & Joeri Rogelj & Elmar Kriegler & Volker Krey & Keywan Riahi, 2018. "A new scenario resource for integrated 1.5 °C research," Nature Climate Change, Nature, vol. 8(12), pages 1027-1030, December.
    22. Duncan McLaren & Nils Markusson, 2020. "The co-evolution of technological promises, modelling, policies and climate change targets," Nature Climate Change, Nature, vol. 10(5), pages 392-397, May.
    23. Ceecee Holz & Sivan Kartha & Tom Athanasiou, 2018. "Fairly sharing 1.5: national fair shares of a 1.5 °C-compliant global mitigation effort," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 117-134, February.
    24. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    25. Giannousakis, Anastasis & Hilaire, Jérôme & Nemet, Gregory F. & Luderer, Gunnar & Pietzcker, Robert C. & Rodrigues, Renato & Baumstark, Lavinia & Kriegler, Elmar, 2021. "How uncertainty in technology costs and carbon dioxide removal availability affect climate mitigation pathways," Energy, Elsevier, vol. 216(C).
    26. Greg Muttitt & James Price & Steve Pye & Dan Welsby, 2023. "Socio-political feasibility of coal power phase-out and its role in mitigation pathways," Nature Climate Change, Nature, vol. 13(2), pages 140-147, February.
    27. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    28. Fergus Green & Richard Denniss, 2018. "Cutting with both arms of the scissors: the economic and political case for restrictive supply-side climate policies," Climatic Change, Springer, vol. 150(1), pages 73-87, September.
    29. Frances C. Moore & Katherine Lacasse & Katharine J. Mach & Yoon Ah Shin & Louis J. Gross & Brian Beckage, 2022. "Determinants of emissions pathways in the coupled climate–social system," Nature, Nature, vol. 603(7899), pages 103-111, March.
    30. Haggerty, Julia H. & Haggerty, Mark N. & Roemer, Kelli & Rose, Jackson, 2018. "Planning for the local impacts of coal facility closure: Emerging strategies in the U.S. West," Resources Policy, Elsevier, vol. 57(C), pages 69-80.
    31. Green, Fergus & Denniss, Richard, 2018. "Cutting with both arms of the scissors: the economic and political case for restrictive supply-side climate policies," LSE Research Online Documents on Economics 87734, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xinyu & Li, Fangfei & Guo, Junfei & Li, Yuanji & Du, Rui & Yang, Xiaohu & He, Ya-Ling, 2024. "Design optimization on solidification performance of a rotating latent heat thermal energy storage system subject to fluctuating heat source," Applied Energy, Elsevier, vol. 362(C).
    2. Wanying Wu & Haibo Zhai & Eugene Holubnyak, 2024. "Technological evolution of large-scale blue hydrogen production toward the U.S. Hydrogen Energy Earthshot," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Zhang, Zeyu & Liang, Yushi & Xue, Xinyue & Li, Yan & Zhang, Mulan & Li, Yiran & Ji, Xiaodong, 2024. "China's future wind energy considering air density during climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Guo, Jianxin & Zhu, Kaiwei & Cheng, Yonglong, 2024. "Deployment of clean energy technologies towards carbon neutrality under resource constraints," Energy, Elsevier, vol. 295(C).
    5. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Marianne Zanon-Zotin & Luiz Bernardo Baptista & Rebecca Draeger & Pedro R. R. Rochedo & Alexandre Szklo & Roberto Schaeffer, 2024. "Unaddressed non-energy use in the chemical industry can undermine fossil fuels phase-out," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Gabriel S. Nambafu & Aaron M. Hollas & Shuyuan Zhang & Peter S. Rice & Daria Boglaienko & John L. Fulton & Miller Li & Qian Huang & Yu Zhu & David M. Reed & Vincent L. Sprenkle & Guosheng Li, 2024. "Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kühne, Kjell & Bartsch, Nils & Tate, Ryan Driskell & Higson, Julia & Habet, André, 2022. "“Carbon Bombs” - Mapping key fossil fuel projects," Energy Policy, Elsevier, vol. 166(C).
    2. Heinisch, Verena & Dujardin, Jérôme & Gabrielli, Paolo & Jain, Pranjal & Lehning, Michael & Sansavini, Giovanni & Sasse, Jan-Philipp & Schaffner, Christian & Schwarz, Marius & Trutnevyte, Evelina, 2023. "Inter-comparison of spatial models for high shares of renewable electricity in Switzerland," Applied Energy, Elsevier, vol. 350(C).
    3. Draeger, Rebecca & Cunha, Bruno S.L. & Müller-Casseres, Eduardo & Rochedo, Pedro R.R. & Szklo, Alexandre & Schaeffer, Roberto, 2022. "Stranded crude oil resources and just transition: Why do crude oil quality, climate ambitions and land-use emissions matter," Energy, Elsevier, vol. 255(C).
    4. Lorenzo Pellegrini & Murat Arsel & Gorka Muñoa & Guillem Rius-Taberner & Carlos Mena & Martí Orta-Martínez, 2024. "The atlas of unburnable oil for supply-side climate policies," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Kemfert, Claudia & Präger, Fabian & Braunger, Isabell & Hoffart, Franziska M. & Brauers, Hanna, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 582-587.
    6. Kathryn Harrison, 2020. "Political Institutions and Supply-Side Climate Politics: Lessons from Coal Ports in Canada and the United States," Global Environmental Politics, MIT Press, vol. 20(4), pages 51-72, Autumn.
    7. Lukas Folkens & Petra Schneider, 2022. "Responsible Carbon Resource Management through Input-Oriented Cap and Trade (IOCT)," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    8. Keiner, Dominik & Gulagi, Ashish & Breyer, Christian, 2023. "Energy demand estimation using a pre-processing macro-economic modelling tool for 21st century transition analyses," Energy, Elsevier, vol. 272(C).
    9. Garth Day & Creina Day, 2022. "The supply-side climate policy of decreasing fossil fuel tax profiles: can subsidized reserves induce a green paradox?," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    10. von Uexkull, Nina & Rød, Espen Geelmuyden & Svensson, Isak, 2024. "Fueling protest? Climate change mitigation, fuel prices and protest onset," World Development, Elsevier, vol. 177(C).
    11. Gregory Trencher & Mathieu Blondeel & Jusen Asuka, 2023. "Do all roads lead to Paris?," Climatic Change, Springer, vol. 176(7), pages 1-33, July.
    12. Michael A. Mehling, 2023. "Supply-side offset crediting to manage climate policy spillover effects," Working Papers EPRG2313, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Mehling, M. A., 2023. "Supply-Side Crediting to Manage Climate Policy Spillover Effects," Cambridge Working Papers in Economics 2345, Faculty of Economics, University of Cambridge.
    14. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    15. Sun, Chuanwang & Zhan, Yanhong & Du, Gang, 2020. "Can value-added tax incentives of new energy industry increase firm's profitability? Evidence from financial data of China's listed companies," Energy Economics, Elsevier, vol. 86(C).
    16. repec:sae:envval:v:29:y:2020:i:2:p:175-195 is not listed on IDEAS
    17. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    18. Lola Nacke & Vadim Vinichenko & Aleh Cherp & Avi Jakhmola & Jessica Jewell, 2024. "Compensating affected parties necessary for rapid coal phase-out but expensive if extended to major emitters," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Benchekroun, Hassan & van der Meijden, Gerard & Withagen, Cees, 2020. "OPEC, unconventional oil and climate change - On the importance of the order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
    20. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    21. Prest, Brian C., 2020. "Supply-Side Reforms to Oil and Gas Production on Federal Lands: Modeling the Implications for Climate Emissions, Revenues, and Production Shifts," RFF Working Paper Series 20-16, Resources for the Future.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04420572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.