IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v217y2024ics0921800923003385.html
   My bibliography  Save this article

Heterogeneous capital stocks and economic inertia in the US economy

Author

Listed:
  • Chester, D.
  • Lynch, C.
  • Szerszynski, B.
  • Mercure, J.-F.
  • Jarvis, A.

Abstract

The timescales of capital investments, and therefore the turnover dynamics of capital stock, have limited representation in macroeconomic modelling. This hinders analysis of the economic inertia produced by these timescales, which is particularly important in the context of a rapid net zero transition in which vast quantities of long-lived investments may need to be prematurely abandoned. We set out to determine the minimum model that is required to accurately represent the turnover dynamics of fixed capital. We develop a quantitative framework for estimating the turnover time of fixed capital assets in the US economy, and derive the annual distribution of both total fixed capital stock and new investments across timescales. We find that these can be effectively aggregated into three major timescale components which can be easily incorporated into integrated assessment models.

Suggested Citation

  • Chester, D. & Lynch, C. & Szerszynski, B. & Mercure, J.-F. & Jarvis, A., 2024. "Heterogeneous capital stocks and economic inertia in the US economy," Ecological Economics, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:ecolec:v:217:y:2024:i:c:s0921800923003385
    DOI: 10.1016/j.ecolecon.2023.108075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923003385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.108075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. J. Jarvis & D. T. Leedal & C. N. Hewitt, 2012. "Climate–society feedbacks and the avoidance of dangerous climate change," Nature Climate Change, Nature, vol. 2(9), pages 668-671, September.
    2. Agarwala, Matthew & Burke, Matt & Klusak, Patrycja & Mohaddes, Kamiar & Volz, Ulrich & Zenghelis, Dimitri, 2021. "Climate Change And Fiscal Sustainability: Risks And Opportunities," National Institute Economic Review, National Institute of Economic and Social Research, vol. 258, pages 28-46, November.
    3. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    4. Shalizi, Zmarak & Lecocq, Franck, 2009. "Climate change and the economics of targeted mitigation in sectors with long-lived capital stock," Policy Research Working Paper Series 5063, The World Bank.
    5. Arjan Lejour & Paul Veenendaal & Gerard Verweij & Nico van Leeuwen, 2006. "Worldscan; a model for international economic policy analysis," CPB Document 111, CPB Netherlands Bureau for Economic Policy Analysis.
    6. Tim Jackson & Ben Drake & Peter Victor & Kurt Kratena & Mark Sommer, 2014. "Foundations for an Ecological Macroeconomics. Literature Review and Model Development. WWWforEurope Working Paper No. 65," WIFO Studies, WIFO, number 47497, March.
    7. Raouf Boucekkine & David de la Croix & Omar Licandro, 2011. "Chapter 5 Vintage Capital Growth Theory: Three Breakthroughs," Frontiers of Economics and Globalization, in: Economic Growth and Development, pages 87-116, Emerald Group Publishing Limited.
    8. Jarvis, Andrew, 2018. "Energy Returns and The Long-run Growth of Global Industrial Society," Ecological Economics, Elsevier, vol. 146(C), pages 722-729.
    9. Yisheng Bu, 2006. "Fixed capital stock depreciation in developing countries: Some evidence from firm level data," Journal of Development Studies, Taylor & Francis Journals, vol. 42(5), pages 881-901.
    10. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
    11. Romain Duval & Christine de la Maisonneuve, 2009. "Long-Run GDP Growth Framework and Scenarios for the World Economy," OECD Economics Department Working Papers 663, OECD Publishing.
    12. Rosa Hendijani, 2021. "Analytical thinking, Little's Law understanding, and stock‐flow performance: two empirical studies," System Dynamics Review, System Dynamics Society, vol. 37(2-3), pages 99-125, April.
    13. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    14. Arnold J. Katz, 2015. "A Primer on the Measurement of Net Stocks, Depreciation, Capital Services, and Their Integration," BEA Working Papers 0123, Bureau of Economic Analysis.
    15. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    16. Weber, Michael & Barth, Volker & Hasselmann, Klaus, 2005. "A multi-actor dynamic integrated assessment model (MADIAM) of induced technological change and sustainable economic growth," Ecological Economics, Elsevier, vol. 54(2-3), pages 306-327, August.
    17. Jaccard, Mark & Rivers, Nic, 2007. "Heterogeneous capital stocks and the optimal timing for CO2 abatement," Resource and Energy Economics, Elsevier, vol. 29(1), pages 1-16, January.
    18. Jaccard, Mark & Failing, Lee & Berry, Trent, 1997. "From equipment to infrastructure: community energy management and greenhouse gas emission reduction," Energy Policy, Elsevier, vol. 25(13), pages 1065-1074, November.
    19. P. Capros & Denise Van Regemorter & Leonidas Paroussos & P. Karkatsoulis & C. Fragkiadakis & S. Tsani & I. Charalampidis & Tamas Revesz, 2013. "GEM-E3 Model Documentation," JRC Research Reports JRC83177, Joint Research Centre.
    20. Giordano, Thierry, 2012. "Adaptive planning for climate resilient long-lived infrastructures," Utilities Policy, Elsevier, vol. 23(C), pages 80-89.
    21. Barucci, Emilio & Gozzi, Fausto, 1998. "Investment in a vintage capital model," Research in Economics, Elsevier, vol. 52(2), pages 159-188, June.
    22. Andreas G. F. Hoepner & Joeri Rogelj, 2021. "Emissions estimations should embed a precautionary principle," Nature Climate Change, Nature, vol. 11(8), pages 638-640, August.
    23. Grubb, Michael, 1997. "Technologies, energy systems and the timing of CO2 emissions abatement : An overview of economic issues," Energy Policy, Elsevier, vol. 25(2), pages 159-172, February.
    24. J.-F. Mercure & H. Pollitt & J. E. Viñuales & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & I. Sognnaes & A. Lam & F. Knobloch, 2018. "Macroeconomic impact of stranded fossil fuel assets," Nature Climate Change, Nature, vol. 8(7), pages 588-593, July.
    25. Jackson, Tim & Victor, Peter A., 2015. "Does credit create a ‘growth imperative’? A quasi-stationary economy with interest-bearing debt," Ecological Economics, Elsevier, vol. 120(C), pages 32-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    2. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    3. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Lennox, James A. & Witajewski-Baltvilks, Jan, 2017. "Directed technical change with capital-embodied technologies: Implications for climate policy," Energy Economics, Elsevier, vol. 67(C), pages 400-409.
    5. Roberto Veneziani & Luca Zamparelli & Michalis Nikiforos & Gennaro Zezza, 2017. "Stock-Flow Consistent Macroeconomic Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1204-1239, December.
    6. Michael Grubb & Jean-Francois Mercure & Pablo Salas & Rutger-Jan Lange & Ida Sognnaes, 2018. "Systems Innovation, Inertia and Pliability: A mathematical exploration with implications for climate change abatement," Working Papers EPRG 1808, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Jaccard, Mark & Rivers, Nic, 2007. "Heterogeneous capital stocks and the optimal timing for CO2 abatement," Resource and Energy Economics, Elsevier, vol. 29(1), pages 1-16, January.
    8. Sylvie Geisendorf, 2016. "The impact of personal beliefs on climate change: the “battle of perspectives” revisited," Journal of Evolutionary Economics, Springer, vol. 26(3), pages 551-580, July.
    9. Dafermos, Yannis & Nikolaidi, Maria, 2019. "Fiscal policy and ecological sustainability: a post-Keynesian perspective," Greenwich Papers in Political Economy 37777, University of Greenwich, Greenwich Political Economy Research Centre.
    10. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Policy Research Working Paper Series 6154, The World Bank.
    11. Sgouris Sgouridis & Abdulla Kaya & Denes Csala, 2016. "Switching Economics for Physics and the Carbon Price Inflation: Problems in Integrated Assessment Models and their Implications," Papers 1603.06196, arXiv.org.
    12. Abdulla Kaya & Denes Csala & Sgouris Sgouridis, 2017. "Constant elasticity of substitution functions for energy modeling in general equilibrium integrated assessment models: a critical review and recommendations," Climatic Change, Springer, vol. 145(1), pages 27-40, November.
    13. Vogt-Schilb, Adrien & Hallegatte, Stephane, 2011. "When starting with the most expensive option makes sense : use and misuse of marginal abatement cost curves," Policy Research Working Paper Series 5803, The World Bank.
    14. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    15. repec:hal:wpaper:hal-00916328 is not listed on IDEAS
    16. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    17. Larch, Mario & Löning, Markus & Wanner, Joschka, 2018. "Can degrowth overcome the leakage problem of unilateral climate policy?," Ecological Economics, Elsevier, vol. 152(C), pages 118-130.
    18. Christiansen, Atle Christer, 2002. "New renewable energy developments and the climate change issue: a case study of Norwegian politics," Energy Policy, Elsevier, vol. 30(3), pages 235-243, February.
    19. World Bank Group, 2018. "Strategic Use of Climate Finance to Maximize Climate Action," World Bank Publications - Reports 30475, The World Bank Group.
    20. Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Energy Policy, Elsevier, vol. 66(C), pages 645-653.
    21. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:217:y:2024:i:c:s0921800923003385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.