IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v6y2023i1d10.1038_s41893-022-00967-9.html
   My bibliography  Save this article

Mineral security essential to achieving the Sustainable Development Goals

Author

Listed:
  • Daniel M. Franks

    (The University of Queensland)

  • Julia Keenan

    (The University of Queensland)

  • Degol Hailu

    (United Nations Development Programme)

Abstract

Minerals are essential ingredients of the Sustainable Development Goals, but in contrast to other natural resources, they are missing from the goals and targets. This Perspective explores why and examines the narratives that shape the role of minerals in development. We share the findings of global consultations conducted under the mandate of the United Nations Environment Assembly to strengthen international cooperation on mineral governance, and we introduce the concepts of ‘development minerals’, ‘mineral security’ and ‘mineral poverty’ to better integrate minerals into the Sustainable Development Goal agenda.

Suggested Citation

  • Daniel M. Franks & Julia Keenan & Degol Hailu, 2023. "Mineral security essential to achieving the Sustainable Development Goals," Nature Sustainability, Nature, vol. 6(1), pages 21-27, January.
  • Handle: RePEc:nat:natsus:v:6:y:2023:i:1:d:10.1038_s41893-022-00967-9
    DOI: 10.1038/s41893-022-00967-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-022-00967-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-022-00967-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carina Wyborn & Federico Davila & Laura Pereira & Michelle Lim & Isis Alvarez & Gretchen Henderson & Amy Luers & Maria Jose Martinez Harms & Kristal Maze & Jasper Montana & Melanie Ryan & Chris Sandbr, 2020. "Imagining transformative biodiversity futures," Nature Sustainability, Nature, vol. 3(9), pages 670-672, September.
    2. David J. Beerling & Euripides P. Kantzas & Mark R. Lomas & Peter Wade & Rafael M. Eufrasio & Phil Renforth & Binoy Sarkar & M. Grace Andrews & Rachael H. James & Christopher R. Pearce & Jean-Francois , 2020. "Potential for large-scale CO2 removal via enhanced rock weathering with croplands," Nature, Nature, vol. 583(7815), pages 242-248, July.
    3. T. E. Graedel & Barbara K. Reck & Alessio Miatto, 2022. "Alloy information helps prioritize material criticality lists," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Ray, George F., 1984. "Mineral reserves : Projected lifetimes and security of supply," Resources Policy, Elsevier, vol. 10(2), pages 75-80, June.
    5. Long Zhang & Wuliyasu Bai & Jing Yu & Linmao Ma & Jingzheng Ren & Weishi Zhang & Yuanzheng Cui, 2018. "Critical Mineral Security in China: An Evaluation Based on Hybrid MCDM Methods," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    6. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    7. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    8. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    9. Mette Bendixen & Jim Best & Chris Hackney & Lars Lønsmann Iversen, 2019. "Time is running out for sand," Nature, Nature, vol. 571(7763), pages 29-31, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Weiwen & Qin, Shan & Zhou, Xinzhu & Guan, Xin & Zeng, Yanzhao & Wang, Zeyu & Shen, Yaohan, 2024. "Three-dimensional quantitative mineral prediction from convolutional neural network model in developing intelligent cleaning technology," Resources Policy, Elsevier, vol. 88(C).
    2. Wang, Shuang & Yang, Lihong, 2024. "Mineral resource extraction and resource sustainability: Policy initiatives for agriculture, economy, energy, and the environment," Resources Policy, Elsevier, vol. 89(C).
    3. Burton, John & Kemp, Deanna & Barnes, Rodger & Parmenter, Joni, 2024. "A socio-spatial analysis of Australia's critical minerals endowment and policy implications," Resources Policy, Elsevier, vol. 88(C).
    4. Niu, Juanjuan & He, Jun & He, Yiqun, 2024. "Harnessing FinTech for sustainable mineral development with innovative financing strategies in China," Resources Policy, Elsevier, vol. 90(C).
    5. Akram, Rabia & Ai, Fengyi & Srivastava, Mohit & Sharma, Ridhima, 2024. "Considering natural gas rents, mineral rents, mineral depletion, and natural resources depletion as new determinants of sustainable development," Resources Policy, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dou Shiquan & Xu Deyi, 2023. "The security of critical mineral supply chains," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 401-412, September.
    2. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    3. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    4. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    5. Margarita N. Ignatyeva & Vera V. Yurak & Alexey V. Dushin & Irina G. Polyanskaya, 2021. "Assessing challenges and threats for balanced subsoil use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17904-17922, December.
    6. Steven B. Young & Shannon Fernandes & Michael O. Wood, 2019. "Jumping the Chain: How Downstream Manufacturers Engage with Deep Suppliers of Conflict Minerals," Resources, MDPI, vol. 8(1), pages 1-24, January.
    7. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    9. Liu, Wenjuan & Agusdinata, Datu B. & Eakin, Hallie & Romero, Hugo, 2022. "Sustainable minerals extraction for electric vehicles: A pilot study of consumers’ perceptions of impacts," Resources Policy, Elsevier, vol. 75(C).
    10. Saleem H. Ali, 2018. "Extracting at the borders: Negotiating political and ecological geographies of movement in mineral frontiers," Sustainable Development, John Wiley & Sons, Ltd., vol. 26(5), pages 481-490, September.
    11. Jianbo Yang & Xin Li & Zehui Xiong & Minxi Wang & Qunyi Liu, 2020. "Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    12. Shriram S. Rangarajan & Suvetha Poyyamani Sunddararaj & AVV Sudhakar & Chandan Kumar Shiva & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2022. "Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges," Clean Technol., MDPI, vol. 4(4), pages 1-23, September.
    13. Leopold Peiseler & Vanessa Schenker & Karin Schatzmann & Stephan Pfister & Vanessa Wood & Tobias Schmidt, 2024. "Carbon footprint distributions of lithium-ion batteries and their materials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Claire L. McLeod & Mark. P. S. Krekeler, 2017. "Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond," Resources, MDPI, vol. 6(3), pages 1-28, August.
    15. Stefanie Klose & Stefan Pauliuk, 2021. "Quantifying longevity and circularity of copper for different resource efficiency policies at the material and product levels," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 979-993, August.
    16. van der Merwe, Antoinette & Cabernard, Livia & Günther, Isabel, 2023. "Urban mining: The relevance of information, transaction costs and externalities," Ecological Economics, Elsevier, vol. 205(C).
    17. Popa, Eugen Octav & Blok, Vincent & Katsoukis, Georgios & Schubert, Cornelius, 2023. "Moral impact of technologies from a pluralist perspective: Artificial photosynthesis as a case in point," Technology in Society, Elsevier, vol. 75(C).
    18. Juan Antonio Duro & Alejandro Perez‐Laborda & Markus Löw & Sarah Matej & Barbara Plank & Fridolin Krausmann & Dominik Wiedenhofer & Helmut Haberl, 2024. "Spatial patterns of built structures co‐determine nations’ level of resource demand," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 289-302, April.
    19. Linda Wårell, 2021. "Mineral Deposits Safeguarding and Land Use Planning—The Importance of Creating Shared Value," Resources, MDPI, vol. 10(4), pages 1-18, April.
    20. J. Ignacio Del Rio & Paulina Fernandez & Emilio Castillo & Luis Felipe Orellana, 2023. "Assesing Climate Change Risk in the Mining Industry: A Case Study in the Copper Industry in the Antofagasta Region, Chile," Commodities, MDPI, vol. 2(3), pages 1-15, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:6:y:2023:i:1:d:10.1038_s41893-022-00967-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.