IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v7y2022i7d10.1038_s41560-022-01060-3.html
   My bibliography  Save this article

The expansion of natural gas infrastructure puts energy transitions at risk

Author

Listed:
  • Claudia Kemfert

    (German Institute of Economic Research)

  • Fabian Präger

    (Technical University of Berlin)

  • Isabell Braunger

    (European University Flensburg)

  • Franziska M. Hoffart

    (Ruhr University Bochum)

  • Hanna Brauers

    (European University Flensburg)

Abstract

Whether additional natural gas infrastructure is needed or would be detrimental to achieving climate protection goals is currently highly controversial. Here we combine five perspectives to argue why expansion of the natural gas infrastructure hinders a renewable energy future and is no bridge technology. We highlight that natural gas is a fossil fuel with a significantly underestimated climate impact that hinders decarbonization through carbon lock-in and stranded assets. We propose five ways to avoid common shortcomings for countries that are developing strategies for greenhouse gas reduction: manage methane emissions of the entire natural gas value chain, revise assumptions of scenario analyses with new research insights on greenhouse gas emissions related to natural gas, replace the ‘bridge’ narrative with unambiguous decarbonization criteria, avoid additional natural gas lock-ins and methane leakage, and take climate-related risks in energy infrastructure planning seriously.

Suggested Citation

  • Claudia Kemfert & Fabian Präger & Isabell Braunger & Franziska M. Hoffart & Hanna Brauers, 2022. "The expansion of natural gas infrastructure puts energy transitions at risk," Nature Energy, Nature, vol. 7(7), pages 582-587, July.
  • Handle: RePEc:nat:natene:v:7:y:2022:i:7:d:10.1038_s41560-022-01060-3
    DOI: 10.1038/s41560-022-01060-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-022-01060-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-022-01060-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Irene Monasterolo & Stefano Battiston & Anthony C. Janetos & Zoey Zheng, 2017. "Vulnerable yet relevant: the two dimensions of climate-related financial disclosure," Climatic Change, Springer, vol. 145(3), pages 495-507, December.
    2. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.
    3. Hausfather, Zeke, 2015. "Bounding the climate viability of natural gas as a bridge fuel to displace coal," Energy Policy, Elsevier, vol. 86(C), pages 286-294.
    4. Yoshino, Naoyuki & Taghizadeh–Hesary, Farhad & Nakahigashi, Masaki, 2019. "Modelling the social funding and spill-over tax for addressing the green energy financing gap," Economic Modelling, Elsevier, vol. 77(C), pages 34-41.
    5. Grubler, Arnulf, 2012. "Energy transitions research: Insights and cautionary tales," Energy Policy, Elsevier, vol. 50(C), pages 8-16.
    6. Daniel Zavala-Araiza & Ramón A Alvarez & David R. Lyon & David T. Allen & Anthony J. Marchese & Daniel J. Zimmerle & Steven P. Hamburg, 2017. "Super-emitters in natural gas infrastructure are caused by abnormal process conditions," Nature Communications, Nature, vol. 8(1), pages 1-10, April.
    7. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 130, pages 1-1.
    8. I. A. Grant Wilson & Iain Staffell, 2018. "Rapid fuel switching from coal to natural gas through effective carbon pricing," Nature Energy, Nature, vol. 3(5), pages 365-372, May.
    9. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Lorenz T. Keyßer & Manfred Lenzen, 2021. "1.5 °C degrowth scenarios suggest the need for new mitigation pathways," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    12. Frederick van der Ploeg & Armon Rezai, 2020. "Stranded Assets in the Transition to a Carbon-Free Economy," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 281-298, October.
    13. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu, 2019. "Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 26, pages 1-15.
    14. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    15. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    16. McGlade, Christophe & Pye, Steve & Ekins, Paul & Bradshaw, Michael & Watson, Jim, 2018. "The future role of natural gas in the UK: A bridge to nowhere?," Energy Policy, Elsevier, vol. 113(C), pages 454-465.
    17. G. P. Peters & R. M. Andrew & J. G. Canadell & P. Friedlingstein & R. B. Jackson & J. I. Korsbakken & C. Quéré & A. Peregon, 2020. "Carbon dioxide emissions continue to grow amidst slowly emerging climate policies," Nature Climate Change, Nature, vol. 10(1), pages 3-6, January.
    18. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    19. Benjamin Hmiel & V. V. Petrenko & M. N. Dyonisius & C. Buizert & A. M. Smith & P. F. Place & C. Harth & R. Beaudette & Q. Hua & B. Yang & I. Vimont & S. E. Michel & J. P. Severinghaus & D. Etheridge &, 2020. "Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions," Nature, Nature, vol. 578(7795), pages 409-412, February.
    20. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    21. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    22. Timothy M. Lenton & Johan Rockström & Owen Gaffney & Stefan Rahmstorf & Katherine Richardson & Will Steffen & Hans Joachim Schellnhuber, 2019. "Climate tipping points — too risky to bet against," Nature, Nature, vol. 575(7784), pages 592-595, November.
    23. Katsumasa Tanaka & Otávio Cavalett & William J. Collins & Francesco Cherubini, 2019. "Asserting the climate benefits of the coal-to-gas shift across temporal and spatial scales," Nature Climate Change, Nature, vol. 9(5), pages 389-396, May.
    24. Christopher J. Smith & Piers M. Forster & Myles Allen & Jan Fuglestvedt & Richard J. Millar & Joeri Rogelj & Kirsten Zickfeld, 2019. "Current fossil fuel infrastructure does not yet commit us to 1.5 °C warming," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    25. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    26. Zhang, Xiaochun & Myhrvold, Nathan P. & Hausfather, Zeke & Caldeira, Ken, 2016. "Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems," Applied Energy, Elsevier, vol. 167(C), pages 317-322.
    27. Steven J. Davis & Christine Shearer, 2014. "A crack in the natural-gas bridge," Nature, Nature, vol. 514(7523), pages 436-437, October.
    28. Stefan Schwietzke & Owen A. Sherwood & Lori M. P. Bruhwiler & John B. Miller & Giuseppe Etiope & Edward J. Dlugokencky & Sylvia Englund Michel & Victoria A. Arling & Bruce H. Vaughn & James W. C. Whit, 2016. "Upward revision of global fossil fuel methane emissions based on isotope database," Nature, Nature, vol. 538(7623), pages 88-91, October.
    29. Batten,, Sandra & Sowerbutts, Rhiannon & Tanaka, Misa, 2016. "Let’s talk about the weather: the impact of climate change on central banks," Bank of England working papers 603, Bank of England.
    30. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    31. J.-F. Mercure & H. Pollitt & J. E. Viñuales & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & I. Sognnaes & A. Lam & F. Knobloch, 2018. "Macroeconomic impact of stranded fossil fuel assets," Nature Climate Change, Nature, vol. 8(7), pages 588-593, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ioannis Kountouris & Rasmus Bramstoft & Theis Madsen & Juan Gea-Bermúdez & Marie Münster & Dogan Keles, 2024. "A unified European hydrogen infrastructure planning to support the rapid scale-up of hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Negrete, Moira & Fuentes, Marcelo & Kraslawski, Andrzej & Irarrazaval, Felipe & Herrera-León, Sebastián, 2024. "Socio-environmental implications of the decarbonization of copper and lithium mining and mineral processing," Resources Policy, Elsevier, vol. 95(C).
    4. Cassetti, Gabriele & Boitier, Baptiste & Elia, Alessia & Le Mouël, Pierre & Gargiulo, Maurizio & Zagamé, Paul & Nikas, Alexandros & Koasidis, Konstantinos & Doukas, Haris & Chiodi, Alessandro, 2023. "The interplay among COVID-19 economic recovery, behavioural changes, and the European Green Deal: An energy-economic modelling perspective," Energy, Elsevier, vol. 263(PC).
    5. Shuguang Liu & Jiayi Wang & Yin Long, 2023. "Research into the Spatiotemporal Characteristics and Influencing Factors of Technological Innovation in China’s Natural Gas Industry from the Perspective of Energy Transition," Sustainability, MDPI, vol. 15(9), pages 1-34, April.
    6. Siddique, Muhammad Bilal & Nielsen, Per Sieverts & Rosendal, Mathias Berg & Jensen, Ida Græsted & Keles, Dogan, 2023. "Impacts of earlier natural gas phase-out & heat-saving policies on district heating and the energy system," Energy Policy, Elsevier, vol. 174(C).
    7. Nikas, Alexandros & Frilingou, Natasha & Heussaff, Conall & Fragkos, Panagiotis & Mittal, Shivika & Sampedro, Jon & Giarola, Sara & Sasse, Jan-Philipp & Rinaldi, Lorenzo & Doukas, Haris & Gambhir, Aja, 2024. "Three different directions in which the European Union could replace Russian natural gas," Energy, Elsevier, vol. 290(C).
    8. Hoffart, Franziska, 2022. "What is a feasible and 1.5°C-aligned hydrogen infrastructure for Germany? A multi-criteria economic study based on socio-technical energy scenarios," Ruhr Economic Papers 979, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    9. Hartvig, Áron Dénes & Kiss-Dobronyi, Bence & Kotek, Péter & Takácsné Tóth, Borbála & Gutzianas, Ioannis & Zareczky, András Zsombor, 2024. "The economic and energy security implications of the Russian energy weapon," Energy, Elsevier, vol. 294(C).
    10. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    11. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    12. Wei, Qi & Zhou, Peng & Shi, Xunpeng, 2023. "The congestion cost of pipeline networks under third-party access in China's natural gas market," Energy, Elsevier, vol. 284(C).
    13. Manav Chauhan & Bharti Rana & Poorvi Gupta & Rahul Kalita & Chhaya Thadhani & Kuntal Manna, 2024. "Tailored pore-confined single-site iron(III) catalyst for selective CH4 oxidation to CH3OH or CH3CO2H using O2," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Hoffart, Franziska M. & D'Orazio, Paola & Holz, Franziska & Kemfert, Claudia, 2024. "Exploring the interdependence of climate, finance, energy, and geopolitics: A conceptual framework for systemic risks amidst multiple crises," Applied Energy, Elsevier, vol. 361(C).
    15. Jiang, Keyang & Zhou, Ying & Zhang, Zhihui & Chen, Shaoqing & Qiu, Rongliang, 2024. "Simulating the economic and health impacts of synergistic emission reduction from accelerated energy transition in Guangdong-Hong Kong-Macao Greater Bay Area between 2020 and 2050," Applied Energy, Elsevier, vol. 364(C).
    16. Koo, Bonchan & Chang, Seungjoon & Kwon, Hweeung, 2023. "Digital twin for natural gas infrastructure operation and management via streaming dynamic mode decomposition with control," Energy, Elsevier, vol. 274(C).
    17. Yingjie Zhu & Yinghui Guo & Yongfa Chen & Jiageng Ma & Dan Zhang, 2024. "Factors Influencing Carbon Emission and Low-Carbon Development Levels in Shandong Province: Method Analysis Based on Improved Random Forest Partial Least Squares Structural Equation Model and Entropy ," Sustainability, MDPI, vol. 16(19), pages 1-21, September.
    18. Yue Li & Xingwu Liu & Tong Wu & Xiangzhou Zhang & Hecheng Han & Xiaoyu Liu & Yuke Chen & Zhenfei Tang & Zhen Liu & Yuhai Zhang & Hong Liu & Lili Zhao & Ding Ma & Weijia Zhou, 2024. "Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Kilinc-Ata, Nurcan & Proskuryakova, Liliana N., 2023. "Empirical analysis of the Russian power industry's transition to sustainability," Utilities Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoffart, Franziska, 2022. "What is a feasible and 1.5°C-aligned hydrogen infrastructure for Germany? A multi-criteria economic study based on socio-technical energy scenarios," Ruhr Economic Papers 979, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    2. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    3. Louis Daumas, 2021. "Should we fear transition risks - A review of the applied literature," Working Papers 2021.05, FAERE - French Association of Environmental and Resource Economists.
    4. Cahen-Fourot, Louison & Campiglio, Emanuele & Godin, Antoine & Kemp-Benedict, Eric & Trsek, Stefan, 2021. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Energy Economics, Elsevier, vol. 103(C).
    5. Ansari, Dawud & Holz, Franziska, 2020. "Between stranded assets and green transformation: Fossil-fuel-producing developing countries towards 2055," World Development, Elsevier, vol. 130(C).
    6. Odenweller, Adrian, 2022. "Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    7. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    8. Ploy Achakulwisut & Peter Erickson & Céline Guivarch & Roberto Schaeffer & Elina Brutschin & Steve Pye, 2023. "Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Paola D'Orazio, 2022. "Mapping the emergence and diffusion of climate-related financial policies: Evidence from a cluster analysis on G20 countries," International Economics, CEPII research center, issue 169, pages 135-147.
    10. Francesca Diluiso & Barbara Annicchiarico & Matthias Kalkuhl & Jan C. Minx, 2020. "Climate Actions and Stranded Assets: The Role of Financial Regulation and Monetary Policy," CESifo Working Paper Series 8486, CESifo.
    11. Santillán Vera, Mónica & García Manrique, Lilia & Rodríguez Peña, Isabel & De La Vega Navarro, Angel, 2023. "Drivers of electricity GHG emissions and the role of natural gas in mexican energy transition," Energy Policy, Elsevier, vol. 173(C).
    12. Robert J. Brecha & Gaurav Ganti & Robin D. Lamboll & Zebedee Nicholls & Bill Hare & Jared Lewis & Malte Meinshausen & Michiel Schaeffer & Christopher J. Smith & Matthew J. Gidden, 2022. "Institutional decarbonization scenarios evaluated against the Paris Agreement 1.5 °C goal," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    14. Don Grant & Tyler Hansen & Andrew Jorgenson & Wesley Longhofer, 2024. "A worldwide analysis of stranded fossil fuel assets’ impact on power plants’ CO2 emissions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Angelika von Dulong, 2023. "Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    16. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    17. Monasterolo,Irene & Mandel,Antoine & Battiston,Stefano & Mazzocchetti,Andrea & Oppermann,Klaus & Coony,Jonathan D'Entremont & Stretton,Stephen John & Stewart,Fiona Elizabeth & Dunz,Nepomuk Max Ferdina, 2022. "The Role of Green Financial Sector Initiatives in the Low-Carbon Transition : A Theoryof Change," Policy Research Working Paper Series 10181, The World Bank.
    18. Rashid, Kashif & Speck, Andrew & Osedach, Timothy P. & Perroni, Dominic V. & Pomerantz, Andrew E., 2020. "Optimized inspection of upstream oil and gas methane emissions using airborne LiDAR surveillance," Applied Energy, Elsevier, vol. 275(C).
    19. Hoffart, Franziska M. & D'Orazio, Paola & Holz, Franziska & Kemfert, Claudia, 2024. "Exploring the interdependence of climate, finance, energy, and geopolitics: A conceptual framework for systemic risks amidst multiple crises," Applied Energy, Elsevier, vol. 361(C).
    20. J. Rickman & M. Falkenberg & S. Kothari & F. Larosa & M. Grubb & N. Ameli, 2024. "The challenge of phasing-out fossil fuel finance in the banking sector," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:7:y:2022:i:7:d:10.1038_s41560-022-01060-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.