IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v13y2024i11p155-d1509914.html
   My bibliography  Save this article

Exploring Acceptance of Agro-Biomass as Innovative Solution for Heating in Rural Areas in Romania

Author

Listed:
  • Ibolya Török

    (Faculty of Geography, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania)

  • Enikő Mátyus

    (Faculty of Business Administration, Bucharest University of Economic Studies, 010374 Bucharest, Romania)

  • Tihamér-Tibor Sebestyén

    (Faculty of Life Sciences and Sports, University of Sapientia, 520036 Sfantu Gheorghe, Romania)

  • Carmen Păunescu

    (Faculty of Business Administration, Bucharest University of Economic Studies, 010374 Bucharest, Romania)

  • Kinga Xénia Havadi-Nagy

    (Faculty of Geography, Babeș-Bolyai University, 400006 Cluj-Napoca, Romania)

Abstract

This paper aims to examine what can predict the adoption of agro-biomass as an innovative heating solution in rural areas. It explores the social acceptance of agro-biomass such as agriculture byproducts for heating in a rural context. The objectives are threefold: (1) to examine if there is a causal relationship between awareness and knowledge of agro-biomass applications for heating and intention to adopt this solution; (2) to investigate the extent to which perceived local drivers as well as barriers associated with agro-biomass utilization influence the intention to adopt this heating solution; and (3) to determine if knowledge about agro-biomass energy use, as well as political barriers to agro-biomass adoption for heating, play a mediating and/or moderating role in the established causal relationships. This paper uses primary data collected from rural residents located in different geographic areas in Romania. The 673 valid responses were analysed through multiple regression and mediation and moderation tests. The results confirm that awareness, knowledge, and perception of local drivers and of political barriers are positive predictors of intention to adopt agro-biomass as an innovative solution for heating. They also confirm the mediating role of knowledge and the moderating role of political barriers in the established relationships.

Suggested Citation

  • Ibolya Török & Enikő Mátyus & Tihamér-Tibor Sebestyén & Carmen Păunescu & Kinga Xénia Havadi-Nagy, 2024. "Exploring Acceptance of Agro-Biomass as Innovative Solution for Heating in Rural Areas in Romania," Resources, MDPI, vol. 13(11), pages 1-16, October.
  • Handle: RePEc:gam:jresou:v:13:y:2024:i:11:p:155-:d:1509914
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/13/11/155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/13/11/155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Küpers, Sophia & Batel, Susana, 2023. "Time, history and meaning-making in research on people's relations with renewable energy technologies (RETs) – A conceptual proposal," Energy Policy, Elsevier, vol. 173(C).
    2. Rodríguez-Segura, Francisco Javier & Osorio-Aravena, Juan Carlos & Frolova, Marina & Terrados-Cepeda, Julio & Muñoz-Cerón, Emilio, 2023. "Social acceptance of renewable energy development in southern Spain: Exploring tendencies, locations, criteria and situations," Energy Policy, Elsevier, vol. 173(C).
    3. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    4. Prosperi, Maurizio & Lombardi, Mariarosaria & Spada, Alessia, 2019. "Ex ante assessment of social acceptance of small-scale agro-energy system: A case study in southern Italy," Energy Policy, Elsevier, vol. 124(C), pages 346-354.
    5. Knauf, Jakob & Wüstenhagen, Rolf, 2023. "Crowdsourcing social acceptance: Why, when and how project developers offer citizens to co-invest in wind power," Energy Policy, Elsevier, vol. 173(C).
    6. Steef V. Hanssen & Vassilis Daioglou & Zoran J. N. Steinmann & Stefan Frank & Alexander Popp & Thierry Brunelle & Pekka Lauri & Tomoko Hasegawa & Mark A. J. Huijbregts & Detlef P. Vuuren, 2020. "Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models," Climatic Change, Springer, vol. 163(3), pages 1569-1586, December.
    7. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    8. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    9. J.-F. Mercure & P. Salas & P. Vercoulen & G. Semieniuk & A. Lam & H. Pollitt & P. B. Holden & N. Vakilifard & U. Chewpreecha & N. R. Edwards & J. E. Vinuales, 2021. "Reframing incentives for climate policy action," Nature Energy, Nature, vol. 6(12), pages 1133-1143, December.
    10. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    11. Adrian Neacsa & Mirela Panait & Jianu Daniel Muresan & Marian Catalin Voica, 2020. "Energy Poverty in European Union: Assessment Difficulties, Effects on the Quality of Life, Mitigation Measures. Some Evidences from Romania," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    12. Alexander Titov & György Kövér & Katalin Tóth & Géza Gelencsér & Bernadett Horváthné Kovács, 2021. "Acceptance and Potential of Renewable Energy Sources Based on Biomass in Rural Areas of Hungary," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    13. Chatterjee, Riti, 2024. "How state governance can offer a new paradigm to energy transition in Indian agriculture?," Energy Policy, Elsevier, vol. 185(C).
    14. Bhattarai, Utsav & Maraseni, Tek & Apan, Armando & Devkota, Laxmi Prasad, 2023. "Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal," Energy Policy, Elsevier, vol. 177(C).
    15. Panarello, Demetrio & Gatto, Andrea, 2023. "Decarbonising Europe – EU citizens’ perception of renewable energy transition amidst the European Green Deal," Energy Policy, Elsevier, vol. 172(C).
    16. Mariangela Vespa & Timo Kortsch & Jan Hildebrand & Petra Schweizer-Ries & Sara Alida Volkmer, 2022. "Not All Places Are Equal: Using Instagram to Understand Cognitions and Affect towards Renewable Energy Infrastructures," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisiak-Zielińska, Marta & Jałoszyńska, Sylwia & Borowiak, Klaudia & Budka, Anna & Dach, Jacek, 2023. "Perception of biogas plants: A public awareness and preference - A case study for the agricultural landscape," Renewable Energy, Elsevier, vol. 217(C).
    2. Karakislak, Irmak & Schneider, Nina, 2023. "The mayor said so? The impact of local political figures and social norms on local responses to wind energy projects," Energy Policy, Elsevier, vol. 176(C).
    3. Hübner, Gundula & Leschinger, Valentin & Müller, Florian J.Y. & Pohl, Johannes, 2023. "Broadening the social acceptance of wind energy – An Integrated Acceptance Model," Energy Policy, Elsevier, vol. 173(C).
    4. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    6. McKenna, Russell & Weinand, Jann Michael & Mulalic, Ismir & Petrovic, Stefan & Mainzer, Kai & Preis, Tobias & Moat, Helen Susannah, 2020. "Improving renewable energy resource assessments by quantifying landscape beauty," Working Paper Series in Production and Energy 43, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    7. Sikke R. Jansma & Le Anh Nguyen Long & Dasom Lee, 2023. "Understanding Energy Citizenship: How Cultural Capital Shapes the Energy Transition," Energies, MDPI, vol. 16(5), pages 1-19, February.
    8. McKenna, R. & Mulalic, I. & Soutar, I. & Weinand, J.M. & Price, J. & Petrović, S. & Mainzer, K., 2022. "Exploring trade-offs between landscape impact, land use and resource quality for onshore variable renewable energy: an application to Great Britain," Energy, Elsevier, vol. 250(C).
    9. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    10. Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    11. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    12. Zbysław Dobrowolski & Grzegorz Drozdowski & Mirela Panait & Arkadiusz Babczuk, 2022. "Can the Economic Value Added Be Used as the Universal Financial Metric?," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    13. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    14. Olatz Azurza-Zubizarreta & Izaro Basurko-PerezdeArenaza & Eñaut Zelarain & Estitxu Villamor & Ortzi Akizu-Gardoki & Unai Villena-Camarero & Alvaro Campos-Celador & Iñaki Barcena-Hinojal, 2021. "Urban Energy Transitions in Europe, towards Low-Socio-Environmental Impact Cities," Sustainability, MDPI, vol. 13(21), pages 1-29, October.
    15. Sunak, Yasin & Madlener, Reinhard, 2012. "The Impact of Wind Farms on Property Values: A Geographically Weighted Hedonic Pricing Model," FCN Working Papers 3/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Mar 2013.
    16. Faulques, Martin & Bonnet, Jean & Bourdin, Sébastien & Juge, Marine & Pigeon, Jonas & Richard, Charlotte, 2022. "Generational effect and territorial distributive justice, the two main drivers for willingness to pay for renewable energies," Energy Policy, Elsevier, vol. 168(C).
    17. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    18. Zeynep Clulow & Michele Ferguson & Peta Ashworth & David Reiner, 2021. "Political ideology and public views of the energy transition in Australia and the UK," Working Papers EPRG2106, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    20. Waidelich, Paul & Steffen, Bjarne, 2024. "Renewable energy financing by state investment banks: Evidence from OECD countries," Energy Economics, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:13:y:2024:i:11:p:155-:d:1509914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.