IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v112y2022ics0140988322003231.html
   My bibliography  Save this article

Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data

Author

Listed:
  • Liang, Jing
  • Qiu, Yueming (Lucy)
  • Xing, Bo

Abstract

During the electrification of household energy consumption, there is an increasing number of consumers that purchase both electric vehicles (EV) and distributed solar photovoltaics (PV) systems. This study aims to examine the change in electricity demand from the power grid for EV owners when they add distributed solar panels to their homes. The impacts of the two technologies combined are different from the sum of two individual impacts because they may not be additive and EV consumers' behaviors may be subject to change. We apply a difference-in-differences model and compare consumers with or without EVs and also EV consumers with and without additional PVs. We use the hourly electricity demand data for 13,190 households in the Phoenix metropolitan area in Arizona. Our results show that EV consumers, without PV panels, use more electricity compared to non-EV consumers, and their average hourly demand is higher by 0.4 kWh. After adding PVs, EV consumers decrease the average hourly demand from the electric grid by 1.1 kWh. The co-adoption of PVs with EVs helps reduce the system peak hour loads. Besides, we also find evidence of behavior changes when EV consumers shift some of their EV charging from night to day so that they are charging their EVs with more cleaner electricity. The annual monetary savings for consumers after adding PVs are estimated to be ~$930, and the total social savings are estimated to be ~$925. Given the positive co-adoption effects, a policy implication is that incentives should be provided to promote the co-adoption of PVs with EVs.

Suggested Citation

  • Liang, Jing & Qiu, Yueming (Lucy) & Xing, Bo, 2022. "Impacts of the co-adoption of electric vehicles and solar panel systems: Empirical evidence of changes in electricity demand and consumer behaviors from household smart meter data," Energy Economics, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003231
    DOI: 10.1016/j.eneco.2022.106170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322003231
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keirstead, James, 2007. "Behavioural responses to photovoltaic systems in the UK domestic sector," Energy Policy, Elsevier, vol. 35(8), pages 4128-4141, August.
    2. Xing, Jianwei & Leard, Benjamin & Li, Shanjun, 2021. "What does an electric vehicle replace?," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
    3. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    4. Li, Xiaomin & Chen, Pu & Wang, Xingwu, 2017. "Impacts of renewables and socioeconomic factors on electric vehicle demands – Panel data studies across 14 countries," Energy Policy, Elsevier, vol. 109(C), pages 473-478.
    5. Delmas, Magali A. & Kahn, Matthew E. & Locke, Stephen L., 2017. "The private and social consequences of purchasing an electric vehicle and solar panels: Evidence from California," Research in Economics, Elsevier, vol. 71(2), pages 225-235.
    6. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    7. Alan Jenn, 2020. "Emissions benefits of electric vehicles in Uber and Lyft ride-hailing services," Nature Energy, Nature, vol. 5(7), pages 520-525, July.
    8. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    9. Florian Knobloch & Steef V. Hanssen & Aileen Lam & Hector Pollitt & Pablo Salas & Unnada Chewpreecha & Mark A. J. Huijbregts & Jean-Francois Mercure, 2020. "Net emission reductions from electric cars and heat pumps in 59 world regions over time," Nature Sustainability, Nature, vol. 3(6), pages 437-447, June.
    10. Robert L. Fares & Michael E. Webber, 2017. "The impacts of storing solar energy in the home to reduce reliance on the utility," Nature Energy, Nature, vol. 2(2), pages 1-10, February.
    11. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    12. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    13. Jing Liang & Yueming Qiu & Bo Xing, 2021. "Social Versus Private Benefits of Energy Efficiency Under Time-of-Use and Increasing Block Pricing," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 43-75, January.
    14. Dalia Ghanem & Aaron Smith, 2021. "What Are the Benefits of High-Frequency Data for Fixed Effects Panel Models?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(2), pages 199-234.
    15. Lucas W. Davis, 2019. "How much are electric vehicles driven?," Applied Economics Letters, Taylor & Francis Journals, vol. 26(18), pages 1497-1502, October.
    16. Filippini, Massimo, 1995. "Electricity demand by time of use An application of the household AIDS model," Energy Economics, Elsevier, vol. 17(3), pages 197-204, July.
    17. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    18. Jing Liang & Pengfei Liu & Yueming Qiu & Yi David Wang & Bo Xing, 2020. "Time-of-Use Electricity Pricing and Residential Low-carbon Energy Technology Adoption," The Energy Journal, , vol. 41(3), pages 1-38, May.
    19. Finn, P. & Fitzpatrick, C. & Connolly, D., 2012. "Demand side management of electric car charging: Benefits for consumer and grid," Energy, Elsevier, vol. 42(1), pages 358-363.
    20. Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
    21. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    22. Zachary A. Needell & James McNerney & Michael T. Chang & Jessika E. Trancik, 2016. "Potential for widespread electrification of personal vehicle travel in the United States," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    23. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    24. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    25. Stapleton, Lee & Sorrell, Steve & Schwanen, Tim, 2016. "Estimating direct rebound effects for personal automotive travel in Great Britain," Energy Economics, Elsevier, vol. 54(C), pages 313-325.
    26. Qiu, Yueming (Lucy) & Wang, Yi David & Xing, Bo, 2021. "Grid impact of non-residential distributed solar energy and reduced air emissions: Empirical evidence from individual-consumer-level smart meter data," Applied Energy, Elsevier, vol. 290(C).
    27. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    28. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    29. Scott Hardman & Gil Tal, 2021. "Understanding discontinuance among California’s electric vehicle owners," Nature Energy, Nature, vol. 6(5), pages 538-545, May.
    30. Mostafa Baladi, S. & Herriges, Joseph A. & Sweeney, Thomas J., 1998. "Residential response to voluntary time-of-use electricity rates," Resource and Energy Economics, Elsevier, vol. 20(3), pages 225-244, September.
    31. Kevin Novan & Aaron Smith, 2018. "The Incentive to Overinvest in Energy Efficiency: Evidence from Hourly Smart-Meter Data," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(3), pages 577-605.
    32. Fikru, Mahelet G., 2019. "Estimated electricity bill savings for residential solar photovoltaic system owners: Are they accurate enough?," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    33. Jesse Burkhardt & Kenneth Gillingham & Praveen K. Kopalle, 2019. "Experimental Evidence on the Effect of Information and Pricing on Residential Electricity Consumption," NBER Working Papers 25576, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jing & Qiu, Jiehong & Wang, Xiangrui & Wu, Jikai & Yang, Sansi & Zhou, You, 2024. "Examining energy inequality: The impact of household wealth on heterogeneous response to temperatures," Energy Policy, Elsevier, vol. 190(C).
    2. Say, Kelvin & Brown, Felix Gabriel & Csereklyei, Zsuzsanna, 2024. "The economics of public transport electrification: When does infrastructure investment matter?," Applied Energy, Elsevier, vol. 360(C).
    3. Kwon, Minji & Cong, Shuchen & Nock, Destenie & Huang, Luling & Qiu, Yueming (Lucy) & Xing, Bo, 2023. "Forgone summertime comfort as a function of avoided electricity use," Energy Policy, Elsevier, vol. 183(C).
    4. Sharda, S. & Garikapati, V.M. & Goulias, K.G. & Reyna, J.L. & Sun, B. & Spurlock, C.A. & Needell, Z., 2024. "The electric vehicles-solar photovoltaics Nexus: Driving cross-sectoral adoption of sustainable technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Cha, Min-kyeong & Struthers, Cory L. & Brown, Marilyn A. & Kale, Snehal & Chapman, Oliver, 2024. "Toward residential decarbonization: Analyzing social-psychological drivers of household co-adoption of rooftop solar, electric vehicles, and efficient HVAC systems in Georgia, U.S," Renewable Energy, Elsevier, vol. 226(C).
    6. Paweł Bryła & Shuvam Chatterjee & Beata Ciabiada-Bryła, 2022. "Consumer Adoption of Electric Vehicles: A Systematic Literature Review," Energies, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Yueming Lucy & Wang, Yi David & Iseki, Hiroyuki & Shen, Xingchi & Xing, Bo & Zhang, Huiming, 2022. "Empirical grid impact of in-home electric vehicle charging differs from predictions," Resource and Energy Economics, Elsevier, vol. 67(C).
    2. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    3. Huang, Robert & Kahn, Matthew E., 2024. "An economic analysis of United States public transit carbon emissions dynamics," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    4. Qiu, Yueming & Kahn, Matthew E. & Xing, Bo, 2019. "Quantifying the rebound effects of residential solar panel adoption," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 310-341.
    5. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    6. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    7. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    8. Gaizka Saldaña & Jose Ignacio San Martin & Inmaculada Zamora & Francisco Javier Asensio & Oier Oñederra, 2019. "Electric Vehicle into the Grid: Charging Methodologies Aimed at Providing Ancillary Services Considering Battery Degradation," Energies, MDPI, vol. 12(12), pages 1-37, June.
    9. Martin, H. & Buffat, R. & Bucher, D. & Hamper, J. & Raubal, M., 2022. "Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Aydın, Erdal & Brounen, Dirk & Ergün, Ahmet, 2023. "The rebound effect of solar panel adoption: Evidence from Dutch households," Energy Economics, Elsevier, vol. 120(C).
    11. Peter M. Schwarz, Nathan Duma, and Ercument Camadan, 2023. "Compensating Solar Prosumers Using Buy-All, Sell-All as an Alternative to Net Metering and Net Purchasing: Total Use, Rebound, and Cross Subsidization," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    12. Cohen, Jed & Azarova, Valeriya & Kollmann, Andrea & Reichl, Johannes, 2019. "Q-complementarity in household adoption of photovoltaics and electricity-intensive goods: The case of electric vehicles," Energy Economics, Elsevier, vol. 83(C), pages 567-577.
    13. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    14. Robert Huang & Matthew E. Kahn, 2024. "Household carbon dioxide emissions Engel Curve dynamics," Contemporary Economic Policy, Western Economic Association International, vol. 42(3), pages 396-415, July.
    15. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    16. Paschmann, Martin, 2017. "Leveraging the Benefits of Integrating and Interacting Electric Vehicles and Distributed Energy Resources," EWI Working Papers 2017-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    17. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    18. Liu, Diyi & Zou, Hongyang & Qiu, Yueming & Du, Huibin, 2024. "Consumer reaction to green subsidy phase-out in China: Evidence from the household photovoltaic industry," Energy Economics, Elsevier, vol. 129(C).
    19. Frondel, Manuel & Kaestner, Kathrin & Sommer, Stephan & Vance, Colin, 2022. "Photovoltaics and the solar rebound: Evidence for Germany," Ruhr Economic Papers 954, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    20. Lucas W. Davis, 2024. "The Economic Determinants of Heat Pump Adoption," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 5(1), pages 162-199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:112:y:2022:i:c:s0140988322003231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.