IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v181y2023ics0301421523002677.html
   My bibliography  Save this article

Brazilian light vehicle fleet decarbonization scenarios for 2050

Author

Listed:
  • Glyniadakis, Sofia
  • Balestieri, José Antônio Perrella

Abstract

To encourage sustainable actions in the transportation sector, energy scenarios play a critical role in defining public policies. Possible scenarios for the technological distribution of light vehicles in 2050 were discussed to decarbonize the Brazilian transportation sector. These scenarios included internal combustion vehicles utilizing ethanol, gasoline hybrid vehicles, and battery-electric vehicles. An emissions minimization algorithm was proposed to identify potential decarbonization scenarios, considering fleet growth conditions obtained from national databases and Brazilian electric generation mix projections. The target was to achieve a 58% reduction in emissions by 2050. A 10% level of battery electric vehicle integration, combined with the widespread use of ethanol as a fuel source for internal combustion vehicles, could achieve the 58% reduction target. This highlights the importance of biofuels in low-carbon policies. Increasing the efficiency of the ethanol production chain could bring the decarbonization target up to 77%. The maximum sustainable share of electric vehicles in the Brazilian electric mix was 38%, indicating favorable scenarios for increasing the use of electric vehicles. The study highlights the potential for reducing emissions in the transportation sector using biofuels and electric vehicles, as well as the importance of optimizing the production chain of biofuels to maximize their efficiency.

Suggested Citation

  • Glyniadakis, Sofia & Balestieri, José Antônio Perrella, 2023. "Brazilian light vehicle fleet decarbonization scenarios for 2050," Energy Policy, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:enepol:v:181:y:2023:i:c:s0301421523002677
    DOI: 10.1016/j.enpol.2023.113682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421523002677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    2. Timothy F. Welch & Alyas Widita, 2019. "Big data in public transportation: a review of sources and methods," Transport Reviews, Taylor & Francis Journals, vol. 39(6), pages 795-818, November.
    3. Paim, Maria-Augusta & Dalmarco, Arthur R. & Yang, Chung-Han & Salas, Pablo & Lindner, Sören & Mercure, Jean-Francois & de Andrade Guerra, José Baltazar Salgueirinho Osório & Derani, Cristiane & Bruce , 2019. "Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix," Energy Policy, Elsevier, vol. 128(C), pages 393-401.
    4. Safari, M., 2018. "Battery electric vehicles: Looking behind to move forward," Energy Policy, Elsevier, vol. 115(C), pages 54-65.
    5. He, Fang & Yin, Yafeng & Lawphongpanich, Siriphong, 2014. "Network equilibrium models with battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 306-319.
    6. André Quites Ordovás Santos & Adriel Rodrigues da Silva & Jorge Javier Gimenez Ledesma & Adriano Batista de Almeida & Marco Roberto Cavallari & Oswaldo Hideo Ando Junior, 2021. "Electricity Market in Brazil: A Critical Review on the Ongoing Reform," Energies, MDPI, vol. 14(10), pages 1-23, May.
    7. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    8. Lap, Tjerk & Benders, René & van der Hilst, Floor & Faaij, André, 2020. "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?," Energy, Elsevier, vol. 195(C).
    9. Bastin, Cristina & Szklo, Alexandre & Rosa, Luiz Pinguelli, 2010. "Diffusion of new automotive technologies for improving energy efficiency in Brazil's light vehicle fleet," Energy Policy, Elsevier, vol. 38(7), pages 3586-3597, July.
    10. Christoph Buchal & Hans-Dieter Karl & Hans-Werner Sinn, 2019. "Kohlemotoren, Windmotoren und Dieselmotoren: Was zeigt die CO2-Bilanz?," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 72(08), pages 40-54, April.
    11. repec:ags:jjoscm:288017 is not listed on IDEAS
    12. De Souza Nascimento, Paulo Tromboni & Junior, Willian Gatti & Oih Yu, Abraham Sin & Baccaro Nigro, Francisco Nigro, 2012. "Suppliers Involvement Strategies in Flex Fuel Vehicle Development," Journal of Operations and Supply Chain Management (JOSCM), Fundação Getulio Vargas, Escola de Administração de Empresas de São Paulo (FGV EAESP), vol. 5(2), December.
    13. Schlachtberger, D.P. & Brown, T. & Schäfer, M. & Schramm, S. & Greiner, M., 2018. "Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints," Energy, Elsevier, vol. 163(C), pages 100-114.
    14. Amir F. N. Abdul-Manan & Victor Gordillo Zavaleta & Avinash Kumar Agarwal & Gautam Kalghatgi & Amer A. Amer, 2022. "Electrifying passenger road transport in India requires near-term electricity grid decarbonisation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maestri, Cláudia Olímpia Neves Mamede & Andrade, Maria Elisabeth Moreira Carvalho, 2022. "Priorities for tariff compensation of distributed electricity generation in Brazil," Utilities Policy, Elsevier, vol. 76(C).
    2. Wifo, 2021. "WIFO-Monatsberichte, Heft 11/2021," WIFO Monatsberichte (monthly reports), WIFO, vol. 94(11), November.
    3. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    7. Wentao Jing & Mohsen Ramezani & Kun An & Inhi Kim, 2018. "Congestion patterns of electric vehicles with limited battery capacity," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-18, March.
    8. Pons-Prats, Jordi & Živojinović, Tanja & Kuljanin, Jovana, 2022. "On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    9. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    10. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    11. Mengzhu Xiao & Manuel Wetzel & Thomas Pregger & Sonja Simon & Yvonne Scholz, 2020. "Modeling the Supply of Renewable Electricity to Metropolitan Regions in China," Energies, MDPI, vol. 13(12), pages 1-31, June.
    12. Iribarren, Diego & Martín-Gamboa, Mario & Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier, 2020. "Influence of climate change externalities on the sustainability-oriented prioritisation of prospective energy scenarios," Energy, Elsevier, vol. 196(C).
    13. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    14. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    15. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    16. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Penna, Caetano C.R. & Geels, Frank W., 2015. "Climate change and the slow reorientation of the American car industry (1979–2012): An application and extension of the Dialectic Issue LifeCycle (DILC) model," Research Policy, Elsevier, vol. 44(5), pages 1029-1048.
    18. Ke, Jintao & Cen, Xuekai & Yang, Hai & Chen, Xiqun & Ye, Jieping, 2019. "Modelling drivers’ working and recharging schedules in a ride-sourcing market with electric vehicles and gasoline vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 160-180.
    19. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    20. Rodrigo Antonio Sbardeloto Kraemer & Douglas Pereira Dias & Alisson Carlos da Silva & Marcos Aurelio Izumida Martins & Mathias Arno Ludwig, 2022. "Cost and Cybersecurity Challenges in the Commissioning of Microgrids in Critical Infrastructure: COGE Case Study," Energies, MDPI, vol. 15(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:181:y:2023:i:c:s0301421523002677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.