IDEAS home Printed from https://ideas.repec.org/p/wiw/wus045/6854.html
   My bibliography  Save this paper

Capital stranding cascades: The impact of decarbonisation on productive asset utilisation

Author

Listed:
  • Cahen-Fourot, Louison
  • Campiglio, Emanuele
  • Dawkins, Elena
  • Godin, Antoine
  • Kemp-Benedict, Eric

Abstract

This article develops a novel methodological framework to investigate the exposure of eco- nomic systems to the risk of physical capital stranding. Combining Input-Output (IO) and network theory, we define measures to identify both the sectors likely to trigger relevant capital stranding cascades and those most exposed to capital stranding risk. We show how, in a sample of ten European countries, mining is among the sectors with the highest external asset strand- ing multipliers. The sectors most affected by capital stranding triggered by decarbonisation include electricity and gas; coke and refined petroleum products; basic metals; and transporta- tion. From these sectors, stranding would frequently cascade down to chemicals; metal products; motor vehicles water and waste services; wholesale and retail trade; and public administration. Finally, we provide an estimate for the lower-bound amount of assets at risk of transition-related stranding, which is in the range of 0.6-8.2% of the overall productive capital stock for our sample of countries, mainly concentrated in the electricity and gas sector, manufacturing, and mining. These results confirm the systemic relevance of transition-related risks on European societies.

Suggested Citation

  • Cahen-Fourot, Louison & Campiglio, Emanuele & Dawkins, Elena & Godin, Antoine & Kemp-Benedict, Eric, 2019. "Capital stranding cascades: The impact of decarbonisation on productive asset utilisation," Ecological Economic Papers 18, WU Vienna University of Economics and Business.
  • Handle: RePEc:wiw:wus045:6854
    as

    Download full text from publisher

    File URL: https://epub.wu.ac.at/6854/
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rozenberg, Julie & Vogt-Schilb, Adrien & Hallegatte, Stephane, 2020. "Instrument choice and stranded assets in the transition to clean capital," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    2. Pol Antras & Davin Chor & Thibault Fally & Russell Hillberry, 2012. "Measuring the Upstreamness of Production and Trade Flows," American Economic Review, American Economic Association, vol. 102(3), pages 412-416, May.
    3. repec:hal:spmain:info:hdl:2441/2vteelu0n785l82j764n6ul273 is not listed on IDEAS
    4. Joya, Omar & Rougier, Eric, 2019. "Do (all) sectoral shocks lead to aggregate volatility? Empirics from a production network perspective," European Economic Review, Elsevier, vol. 113(C), pages 77-107.
    5. Kemp-Benedict, Eric, 2018. "Investing in a Green Transition," Ecological Economics, Elsevier, vol. 153(C), pages 218-236.
    6. Eric Rougier & O. Joya, 2019. "Do (all) sectoral shocks lead to aggregate volatility ? A production network perspective," Post-Print hal-02273192, HAL.
    7. Marin, Giovanni & Vona, Francesco, 2019. "Climate policies and skill-biased employment dynamics: Evidence from EU countries," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    8. Richard Wood & Konstantin Stadler & Tatyana Bulavskaya & Stephan Lutter & Stefan Giljum & Arjan De Koning & Jeroen Kuenen & Helmut Schütz & José Acosta-Fernández & Arkaitz Usubiaga & Moana Simas & Olg, 2014. "Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis," Sustainability, MDPI, vol. 7(1), pages 1-26, December.
    9. Donald Gilchrist & Larry St. Louis, 2004. "An Algorithm for the Consistent Inclusion of Partial Information in the Revision of Input-Output Tables," Economic Systems Research, Taylor & Francis Journals, vol. 16(2), pages 149-156.
    10. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    11. Vasco M. Carvalho & Alireza Tahbaz-Salehi, 2019. "Production Networks: A Primer," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 635-663, August.
    12. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    13. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    14. Stefano Battiston & Antoine Mandel & Irene Monasterolo & Franziska Schütze & Gabriele Visentin, 2017. "A climate stress-test of the financial system," Nature Climate Change, Nature, vol. 7(4), pages 283-288, April.
    15. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    16. Bastidas, Daniel & Mc Isaac, Florent, 2019. "Reaching Brazil's Nationally Determined Contributions: An assessment of the key transitions in final demand and employment," Energy Policy, Elsevier, vol. 135(C).
    17. Donald Gilchrist & Larry V. ST Louis, 1999. "Completing Input-Output Tables using Partial Information, with an Application to Canadian Data," Economic Systems Research, Taylor & Francis Journals, vol. 11(2), pages 185-194.
    18. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    19. Frederick van der Ploeg & Armon Rezai, 2020. "Stranded Assets in the Transition to a Carbon-Free Economy," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 281-298, October.
    20. Peter Klimek & Sebastian Poledna & Stefan Thurner, 2019. "Quantifying economic resilience from input–output susceptibility to improve predictions of economic growth and recovery," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    21. I�aki Aldasoro & Ignazio Angeloni, 2015. "Input-output-based measures of systemic importance," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 589-606, April.
    22. Massimo Tavoni & Elmar Kriegler & Keywan Riahi & Detlef P. van Vuuren & Tino Aboumahboub & Alex Bowen & Katherine Calvin & Emanuele Campiglio & Tom Kober & Jessica Jewell & Gunnar Luderer & Giacomo Ma, 2015. "Post-2020 climate agreements in the major economies assessed in the light of global models," Nature Climate Change, Nature, vol. 5(2), pages 119-126, February.
    23. Welsch, Heinz, 2001. "The determinants of production-related carbon emissions in West Germany, 1985-1990: assessing the role of technology and trade," Structural Change and Economic Dynamics, Elsevier, vol. 12(4), pages 425-455, December.
    24. J.-F. Mercure & H. Pollitt & J. E. Viñuales & N. R. Edwards & P. B. Holden & U. Chewpreecha & P. Salas & I. Sognnaes & A. Lam & F. Knobloch, 2018. "Macroeconomic impact of stranded fossil fuel assets," Nature Climate Change, Nature, vol. 8(7), pages 588-593, July.
    25. Pfeiffer, Alexander & Hepburn, Cameron & Vogt-Schilb, Adrien & Caldecott, Ben, 2018. "Committed Emissions from Existing and Planned Power Plants and Asset Stranding Required to Meet the Paris Agreement," IDB Publications (Working Papers) 8886, Inter-American Development Bank.
    26. Elizabeth Baldwin & Yongyang Cai & Karlygash Kuralbayeva, 2018. "To Build or Not to Build? Capital Stocks and Climate Policy," CESifo Working Paper Series 6884, CESifo.
    27. Cahen-Fourot, Louison & Campiglio, Emanuele & Dawkins, Elena & Godin, Antoine & Kemp-Benedict, Eric, 2020. "Looking for the Inverted Pyramid: An Application Using Input-Output Networks," Ecological Economics, Elsevier, vol. 169(C).
    28. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.
    29. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    30. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    31. Chen, G.Q. & Wu, X.D. & Guo, Jinlan & Meng, Jing & Li, Chaohui, 2019. "Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD)," Energy Economics, Elsevier, vol. 81(C), pages 835-847.
    32. Zhang, Zengkai & Zhang, ZhongXiang & Zhu, Kunfu, 2020. "Allocating carbon responsibility: The role of spatial production fragmentation," Energy Economics, Elsevier, vol. 87(C).
    33. Emanuele Campiglio & Yannis Dafermos & Pierre Monnin & Josh Ryan-Collins & Guido Schotten & Misa Tanaka, 2018. "Climate change challenges for central banks and financial regulators," Nature Climate Change, Nature, vol. 8(6), pages 462-468, June.
    34. Perrier, Quentin & Quirion, Philippe, 2018. "How shifting investment towards low-carbon sectors impacts employment: Three determinants under scrutiny," Energy Economics, Elsevier, vol. 75(C), pages 464-483.
    35. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    36. Zhang, Youguo, 2010. "Supply-side structural effect on carbon emissions in China," Energy Economics, Elsevier, vol. 32(1), pages 186-193, January.
    37. Thomas Allen & Stéphane Dees & Jean Boissinot & Carlos Mateo Caicedo Graciano & Valérie Chouard & Laurent Clerc & Annabelle de Gaye & Antoine Devulder & Sébastien Diot & Noémie Lisack & Fulvio Pegorar, 2020. "Climate-Related Scenarios for Financial Stability Assessment: an Application to France," Working papers 774, Banque de France.
    38. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    39. Pablo Piñero & Martin Bruckner & Hanspeter Wieland & Eva Pongrácz & Stefan Giljum, 2019. "The raw material basis of global value chains: allocating environmental responsibility based on value generation," Economic Systems Research, Taylor & Francis Journals, vol. 31(2), pages 206-227, April.
    40. Dan Tong & Qiang Zhang & Yixuan Zheng & Ken Caldeira & Christine Shearer & Chaopeng Hong & Yue Qin & Steven J. Davis, 2019. "Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target," Nature, Nature, vol. 572(7769), pages 373-377, August.
    41. Richard S. J. Tol, 2009. "The Economic Effects of Climate Change," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 29-51, Spring.
    42. Robert Vermeulen & Edo Schets & Melanie Lohuis & Barbara Kolbl & David-Jan Jansen & Willem Heeringa, 2018. "An energy transition risk stress test for the financial system of the Netherlands," DNB Occasional Studies 1607, Netherlands Central Bank, Research Department.
    43. Peter Erickson & Michael Lazarus & Georgia Piggot, 2018. "Limiting fossil fuel production as the next big step in climate policy," Nature Climate Change, Nature, vol. 8(12), pages 1037-1043, December.
    44. Bård Harstad, 2012. "Buy Coal! A Case for Supply-Side Environmental Policy," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 77-115.
    45. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    46. Ryna Yiyun Cui & Nathan Hultman & Morgan R. Edwards & Linlang He & Arijit Sen & Kavita Surana & Haewon McJeon & Gokul Iyer & Pralit Patel & Sha Yu & Ted Nace & Christine Shearer, 2019. "Quantifying operational lifetimes for coal power plants under the Paris goals," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    47. Peter Klimek & Sebastian Poledna & Stefan Thurner, 2019. "Economic resilience from input-output susceptibility improves predictions of economic growth and recovery," Papers 1903.03203, arXiv.org.
    48. Stolbova, Veronika & Monasterolo, Irene & Battiston, Stefano, 2018. "A Financial Macro-Network Approach to Climate Policy Evaluation," Ecological Economics, Elsevier, vol. 149(C), pages 239-253.
    49. Florent MCISAAC & Daniel BASTIDAS, 2019. "Reaching Brazil's Nationally Determined Contributions: An Assessment of the Key Transitions in Final Demand and Employment," Working Paper 911644f9-625d-496f-8ecf-8, Agence française de développement.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campiglio, Emanuele & Dietz, Simon & Venmans, Frank, 2022. "Optimal climate policy as if the transition matters," LSE Research Online Documents on Economics 117609, London School of Economics and Political Science, LSE Library.
    2. Gregor Semieniuk & Emanuele Campiglio & Jean‐Francois Mercure & Ulrich Volz & Neil R. Edwards, 2021. "Low‐carbon transition risks for finance," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    3. Louis Daumas, 2021. "Should we fear transition risks - A review of the applied literature," Working Papers 2021.05, FAERE - French Association of Environmental and Resource Economists.
    4. Magacho, Guilherme & Espagne, Etienne & Godin, Antoine & Mantes, Achilleas & Yilmaz, Devrim, 2023. "Macroeconomic exposure of developing economies to low-carbon transition," World Development, Elsevier, vol. 167(C).
    5. Angelika von Dulong, 2023. "Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    7. Francesca Diluiso & Barbara Annicchiarico & Matthias Kalkuhl & Jan C. Minx, 2020. "Climate Actions and Stranded Assets: The Role of Financial Regulation and Monetary Policy," CESifo Working Paper Series 8486, CESifo.
    8. Antoine GODIN & Paul Hadji-Lazaro, 2020. "Demand-induced transition risks: A systemic approach applied to South Africa," Working Paper 1ec2dacf-58b9-4235-8d35-4, Agence française de développement.
    9. Lucas Bretschger & Karen Pittel, 2020. "Twenty Key Challenges in Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 725-750, December.
    10. Irene Monasterolo & Nepomuk Dunz & Andrea Mazzocchetti & Régis Gourdel, 2022. "Derisking the low-carbon transition: investors’ reaction to climate policies, decarbonization and distributive effects," Review of Evolutionary Political Economy, Springer, vol. 3(1), pages 31-71, April.
    11. Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda & McCarten, Matthew & Tan, Eric K.M., 2023. "Climate transition risk in U.S. loan portfolios: Are all banks the same?," International Review of Financial Analysis, Elsevier, vol. 85(C).
    12. Monasterolo,Irene & Mandel,Antoine & Battiston,Stefano & Mazzocchetti,Andrea & Oppermann,Klaus & Coony,Jonathan D'Entremont & Stretton,Stephen John & Stewart,Fiona Elizabeth & Dunz,Nepomuk Max Ferdina, 2022. "The Role of Green Financial Sector Initiatives in the Low-Carbon Transition : A Theoryof Change," Policy Research Working Paper Series 10181, The World Bank.
    13. Zhang, Xingmin & Zhang, Shuai & Lu, Liping, 2022. "The banking instability and climate change: Evidence from China," Energy Economics, Elsevier, vol. 106(C).
    14. Mercy Berman DeMenno, 2023. "Environmental sustainability and financial stability: can macroprudential stress testing measure and mitigate climate-related systemic financial risk?," Journal of Banking Regulation, Palgrave Macmillan, vol. 24(4), pages 445-473, December.
    15. Thomas J. Sargent & John Stachurski, 2022. "Economic Networks: Theory and Computation," Papers 2203.11972, arXiv.org, revised Jul 2022.
    16. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2023. "Energy footprints and the international trade network: A new dataset. Is the European Union doing it better?," Ecological Economics, Elsevier, vol. 204(PA).
    17. Donato Masciandaro & Riccardo Russo, 2022. "Central Banks and Climate Policy: Unpleasant Trade–Offs? A Principal–Agent Approach," BAFFI CAREFIN Working Papers 22181, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    18. Frederick van der Ploeg & Armon Rezai, 2020. "Stranded Assets in the Transition to a Carbon-Free Economy," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 281-298, October.
    19. Gouriéroux, C. & Monfort, A. & Renne, J.-P., 2022. "Required Capital for Long-Run Risks," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    20. Stefano Carattini & Suphi Sen, 2019. "Carbon Taxes and Stranded Assets: Evidence from Washington State," CESifo Working Paper Series 7785, CESifo.

    More about this item

    Keywords

    stranded assets; low-carbon transition; physical capital stocks; fossil fuels; input-output analysis; networks;
    All these keywords.

    JEL classification:

    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels
    • O10 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - General
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wus045:6854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: WU Library (email available below). General contact details of provider: https://research.wu.ac.at/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.