IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v370y2024ics0306261924010018.html
   My bibliography  Save this article

Environmental effects of vehicle-to-grid charging in future energy systems – A prospective life cycle assessment

Author

Listed:
  • Wohlschlager, Daniela
  • Kigle, Stephan
  • Schindler, Vanessa
  • Neitz-Regett, Anika
  • Fröhling, Magnus

Abstract

Vehicle-to-grid (V2G) is increasingly recognized as a concept that uses battery electric vehicles (BEVs) as flexible storage options, enabling both charging and discharging of vehicle batteries. Applications of V2G aim towards technical and economic benefits from the system and end-user perspectives. Life Cycle Assessments (LCA) on BEVs indicate that charging strategies potentially reduce operational emissions. Besides evaluating environmental effects on the ‘technology level’, the literature recommends considering impacts on the ‘system level’ caused by a diffusion of the investigated technology. Since the future electricity mix per hour of (dis)charging is decisive for the impact of BEVs, systemic effects include repercussions of charging strategies on hourly electricity generation. When analyzing future scenarios, a prospective LCA (pLCA) allows us to consider technological developments. To assess the impact of charging strategies, the literature lacks a consistent framework that applies a pLCA approach and considers repercussions on the hourly greenhouse gas (GHG) emissions of electricity. The contribution of this article is the consolidation of the system and technology point of view when assessing V2G services. First, we present a framework that combines energy system modeling and a comparative pLCA to assess medium and long-term effects. To prove its suitability, the framework is exemplarily applied to evaluate two cost-minimized climate policy scenarios of Germany, i.e., with and without the option of V2G charging. The article outlines repercussions on the electricity system from 2025 to 2045 in an hourly resolution. This allows determining the impact per charging strategy on the technology level compared to conventional passenger cars in the second part of the study. Despite the insignificant effects on total GHG emissions by 2045, V2G charging accelerates decarbonizing electricity generation in the medium-term (2030–2035). When assessing the impact on BEVs, V2G causes substantial reductions. By 2030, operational emissions decrease between −50% and almost −200% compared to uncontrolled charging (144 kgCO2e/BEV). These potentials depend on the allocation of GHG savings reached through the secondary purpose of BEVs, i.e., a storage option for the energy system. With the ongoing decarbonization of electricity, however, the potential of V2G to reduce operational GHG emissions decreases, and the production phase gains importance. Regarding long-term contributions, substituting 117 GWh of stationary batteries indicates a reduction in raw material demands. Overall, combining the system and technology levels in a prospective assessment enhances the understanding of environmental effects caused by a large-scale diffusion of V2G charging. Researchers can further apply the outlined method for assessing use cases in other geographical scopes and time frames.

Suggested Citation

  • Wohlschlager, Daniela & Kigle, Stephan & Schindler, Vanessa & Neitz-Regett, Anika & Fröhling, Magnus, 2024. "Environmental effects of vehicle-to-grid charging in future energy systems – A prospective life cycle assessment," Applied Energy, Elsevier, vol. 370(C).
  • Handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924010018
    DOI: 10.1016/j.apenergy.2024.123618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:370:y:2024:i:c:s0306261924010018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.