FTT:Power : A global model of the power sector with induced technological change and natural resource depletion
Author
Abstract
Suggested Citation
DOI: 10.1016/j.enpol.2012.06.025
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mercure, Jean-François & Salas, Pablo, 2012.
"An assessement of global energy resource economic potentials,"
Energy, Elsevier, vol. 46(1), pages 322-336.
- J. F. Mercure & P. Salas, 2012. "An assessement of global energy resource economic potentials," Papers 1205.4693, arXiv.org, revised Aug 2012.
- Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
- McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
- Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
- Themelis, Nickolas J. & Ulloa, Priscilla A., 2007. "Methane generation in landfills," Renewable Energy, Elsevier, vol. 32(7), pages 1243-1257.
- Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
- Jonathan Kohler, Michael Grubb, David Popp and Ottmar Edenhofer, 2006.
"The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project,"
The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 17-56.
- Köhler Jonathan & Michael Grubb & David Popp & Ottmar Edenhofer, 2006. "The Transition to Endogenous Technical Change in Climate-Economy Models: A Technical Overview to the Innovation Modeling Comparison Project," The Energy Journal, , vol. 27(1_suppl), pages 17-56, January.
- Jonathan Kohler, Terry Barker, Dennis Anderson and Haoran Pan, 2006. "Combining Energy Technology Dynamics and Macroeconometrics: The E3MG Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 113-134.
- Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
- Terry Barker, Haoran Pan, Jonathan Kohler, Rachel Warren, and Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 241-258.
- K. J. Arrow, 1971.
"The Economic Implications of Learning by Doing,"
Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149,
Palgrave Macmillan.
- Kenneth J. Arrow, 1962. "The Economic Implications of Learning by Doing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(3), pages 155-173.
- Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
- Terry Barker and S. Serban Scrieciu, 2010. "Modeling Low Climate Stabilization with E3MG: Towards a 'New Economics' Approach to Simulating Energy-Environment-Economy System Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Anderson, Dennis & Winne, Sarah, 2007. "Energy system change and external effects in climate change mitigation," Environment and Development Economics, Cambridge University Press, vol. 12(3), pages 359-378, June.
- Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
- Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
- Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
- Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mercure, Jean-François & Salas, Pablo, 2013.
"On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities,"
Energy Policy, Elsevier, vol. 63(C), pages 469-483.
- Jean-Francois Mercure & Pablo Salas, 2012. "On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities," Papers 1209.0708, arXiv.org, revised Jul 2013.
- Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014.
"The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector,"
Energy Policy, Elsevier, vol. 73(C), pages 686-700.
- Jean-Francois Mercure & Hector Pollitt & Unnada Chewpreecha & Pablo Salas & Aideen M. Foley & Philip B. Holden & Neil R. Edwards, 2013. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," 4CMR Working Paper Series 006, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
- Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
- Mercure, Jean-François & Salas, Pablo, 2012.
"An assessement of global energy resource economic potentials,"
Energy, Elsevier, vol. 46(1), pages 322-336.
- J. F. Mercure & P. Salas, 2012. "An assessement of global energy resource economic potentials," Papers 1205.4693, arXiv.org, revised Aug 2012.
- Jean-Francois Mercure & Pablo Salas, 2013. "An assessment of energy resources for global decarbonisation," 4CMR Working Paper Series 002, University of Cambridge, Department of Land Economy, Cambridge Centre for Climate Change Mitigation Research.
- Ciarli, Tommaso & Savona, Maria, 2019.
"Modelling the Evolution of Economic Structure and Climate Change: A Review,"
Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
- Tommaso Ciarli & Maria Savona, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," SPRU Working Paper Series 2019-01, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
- Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
- Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
- Bossavy, Arthur & Girard, Robin & Kariniotakis, Georges, 2016. "Sensitivity analysis in the technical potential assessment of onshore wind and ground solar photovoltaic power resources at regional scale," Applied Energy, Elsevier, vol. 182(C), pages 145-153.
- Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
- Lancker, Kira & Quaas, Martin F., 2019.
"Increasing marginal costs and the efficiency of differentiated feed-in tariffs,"
Energy Economics, Elsevier, vol. 83(C), pages 104-118.
- Lancker, Kira & Quaas, Martin, 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203641, Verein für Socialpolitik / German Economic Association.
- Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
- Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
- Pfeiffer, Birte & Mulder, Peter, 2013.
"Explaining the diffusion of renewable energy technology in developing countries,"
Energy Economics, Elsevier, vol. 40(C), pages 285-296.
- Pohl, Birte & Mulder, Peter, 2013. "Explaining the Diffusion of Renewable Energy Technology in Developing Countries," GIGA Working Papers 217, GIGA German Institute of Global and Area Studies.
- Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
- Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
- Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
More about this item
Keywords
Energy technology model; Climate change mitigation; Induced technological change;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:799-811. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.