IDEAS home Printed from https://ideas.repec.org/r/wly/japmet/v28y2013i5p777-795.html
   My bibliography  Save this item

Generalized Autoregressive Score Models With Applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Matkovskyy, Roman & Jalan, Akanksha & Dowling, Michael, 2020. "Effects of economic policy uncertainty shocks on the interdependence between Bitcoin and traditional financial markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 150-155.
  2. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
  3. Marimoutou, Vêlayoudom & Soury, Manel, 2015. "Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model," Energy, Elsevier, vol. 88(C), pages 417-429.
  4. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
  5. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
  6. Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022. "A neural network ensemble approach for GDP forecasting," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
  7. Anne Péguin-Feissolle & Bilel Sanhaji, 2016. "Tests of the Constancy of Conditional Correlations of Unknown Functional Form in Multivariate GARCH Models," Annals of Economics and Statistics, GENES, issue 123-124, pages 77-101.
  8. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2014. "Modeling Dependence Structure and Forecasting Portfolio Value-at-Risk with Dynamic Copulas," SIRE Discussion Papers 2015-25, Scottish Institute for Research in Economics (SIRE).
  9. Stanislav Anatolyev, 2021. "Directional news impact curve," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 94-107, January.
  10. Janus, Paweł & Koopman, Siem Jan & Lucas, André, 2014. "Long memory dynamics for multivariate dependence under heavy tails," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 187-206.
  11. Luisa Bisaglia & Matteo Grigoletto, 2018. "A new time-varying model for forecasting long-memory series," Papers 1812.07295, arXiv.org.
  12. repec:cte:wsrepe:24552 is not listed on IDEAS
  13. Hilde C. Bjørnland & Roberto Casarin & Marco Lorusso & Francesco Ravazzolo, 2023. "Fiscal Policy Regimes in Resource-Rich Economies," Working Papers No 13/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  14. Bartels, Mariana & Ziegelmann, Flavio A., 2016. "Market risk forecasting for high dimensional portfolios via factor copulas with GAS dynamics," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 66-79.
  15. Cem Cakmakli & Yasin Simsek, 2023. "Bridging the Covid-19 Data and the Epidemiological Model using Time-Varying Parameter SIRD Model," Papers 2301.13692, arXiv.org.
  16. Blasques, F. & van Brummelen, J. & Gorgi, P. & Koopman, S.J., 2024. "A robust Beveridge–Nelson decomposition using a score-driven approach with an application," Economics Letters, Elsevier, vol. 236(C).
  17. Umlandt, Dennis, 2023. "Score-driven asset pricing: Predicting time-varying risk premia based on cross-sectional model performance," Journal of Econometrics, Elsevier, vol. 237(2).
  18. Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
  19. Aknouche, Abdelhakim & Francq, Christian, 2023. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," Journal of Econometrics, Elsevier, vol. 237(2).
  20. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
  21. Catania, Leopoldo & Luati, Alessandra, 2023. "Semiparametric modeling of multiple quantiles," Journal of Econometrics, Elsevier, vol. 237(2).
  22. Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
  23. Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Measuring Success: Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers 11-19, Association Française de Cliométrie (AFC).
  24. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
  25. Drew Creal & Siem Jan Koopman & André Lucas & Marcin Zamojski, 2015. "Generalized Autoregressive Method of Moments," Tinbergen Institute Discussion Papers 15-138/III, Tinbergen Institute, revised 06 Jul 2018.
  26. Barbara Rossi & Atsushi Inoue & Yiru Wang, 2024. "Has the Phillips curve flattened?," French Stata Users' Group Meetings 2024 22, Stata Users Group.
  27. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
  28. Andrew Harvey & Ryoko Ito, 2017. "Modeling time series with zero observations," Economics Papers 2017-W01, Economics Group, Nuffield College, University of Oxford.
  29. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
  30. Ke, Rui & Yang, Luyao & Tan, Changchun, 2022. "Forecasting tail risk for Bitcoin: A dynamic peak over threshold approach," Finance Research Letters, Elsevier, vol. 49(C).
  31. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
  32. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
  33. Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
  34. Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
  35. Nguyen, Hoang & Javed, Farrukh, 2023. "Dynamic relationship between Stock and Bond returns: A GAS MIDAS copula approach," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 272-292.
  36. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
  37. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-78, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  38. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
  39. Michel Ferreira Cardia Haddad & Szabolcs Blazsek & Philip Arestis & Franz Fuerst & Hsia Hua Sheng, 2023. "The two-component Beta-t-QVAR-M-lev: a new forecasting model," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 379-401, December.
  40. Kazeem Abimbola Sanusi & Zandri Dickason-Koekemoer, 2022. "Cryptocurrency Returns, Cybercrime and Stock Market Volatility: GAS and Regime Switching Approaches," International Journal of Economics and Financial Issues, Econjournals, vol. 12(6), pages 52-64, November.
  41. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
  42. Shi, Yong & Zhang, Linzi, 2023. "Modelling long- and short-term multi-dimensional patterns in predictive maintenance with accumulative attention," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
  43. Massimiliano Giacalone & Demetrio Panarello, 2022. "A Nonparametric Approach for Testing Long Memory in Stock Returns’ Higher Moments," Mathematics, MDPI, vol. 10(5), pages 1-21, February.
  44. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
  45. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
  46. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
  47. Chang, Kuang-Liang, 2023. "The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate," Journal of International Money and Finance, Elsevier, vol. 133(C).
  48. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
  49. Xingyu Dai & Dongna Zhang & Chi Keung Marco Lau & Qunwei Wang, 2023. "Multiobjective portfolio optimization: Forecasting and evaluation under investment horizon heterogeneity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2167-2196, December.
  50. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
  51. Tranberg, Bo & Hansen, Rasmus Thrane & Catania, Leopoldo, 2020. "Managing volumetric risk of long-term power purchase agreements," Energy Economics, Elsevier, vol. 85(C).
  52. Neves, César & Fernandes, Cristiano & Hoeltgebaum, Henrique, 2017. "Five different distributions for the Lee–Carter model of mortality forecasting: A comparison using GAS models," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 48-57.
  53. Gong, Yuting & Ma, Chao & Chen, Qiang, 2022. "Exchange rate dependence and economic fundamentals: A Copula-MIDAS approach," Journal of International Money and Finance, Elsevier, vol. 123(C).
  54. Hotta, Luiz & Trucíos, Carlos, 2015. "Robust bootstrap forecast densities for GARCH models: returns, volatilities and value-at-risk," DES - Working Papers. Statistics and Econometrics. WS ws1523, Universidad Carlos III de Madrid. Departamento de Estadística.
  55. Andres, P. & Harvey, A., 2012. "The Dyanamic Location/Scale Model: with applications to intra-day financial data," Cambridge Working Papers in Economics 1240, Faculty of Economics, University of Cambridge.
  56. Tatjana Dahlhaus & Julia Schaumburg & Tatevik Sekhposyan, 2021. "Networking the Yield Curve: Implications for Monetary Policy," Staff Working Papers 21-4, Bank of Canada.
  57. Andries C. van Vlodrop & Andre (A.) Lucas, 2018. "Estimation Risk and Shrinkage in Vast-Dimensional Fundamental Factor Models," Tinbergen Institute Discussion Papers 18-099/III, Tinbergen Institute.
  58. Paolo Gorgi, 2020. "Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1325-1347, December.
  59. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
  60. Francisco Blasques & Siem Jan Koopman & Katarzyna Lasak & André Lucas, 2015. "In-Sample Bounds for Time-Varying Parameters of Observation Driven Models," Tinbergen Institute Discussion Papers 15-027/III, Tinbergen Institute, revised 07 Sep 2015.
  61. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
  62. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
  63. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
  64. Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2012. "Stationarity and Ergodicity of Univariate Generalized Autoregressive Score Processes," Tinbergen Institute Discussion Papers 12-059/4, Tinbergen Institute.
  65. Custodio João, Igor & Lucas, André & Schaumburg, Julia & Schwaab, Bernd, 2023. "Dynamic clustering of multivariate panel data," Journal of Econometrics, Elsevier, vol. 237(2).
  66. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
  67. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
  68. Giacomo Bormetti & Fulvio Corsi, 2021. "A Lucas Critique Compliant SVAR model with Observation-driven Time-varying Parameters," Papers 2107.05263, arXiv.org, revised Feb 2022.
  69. Andres, Philipp, 2014. "Maximum likelihood estimates for positive valued dynamic score models; The DySco package," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 34-42.
  70. Petrella, Ivan & Venditti, Fabrizio & Delle Monache, Davide, 2016. "Adaptive state space models with applications to the business cycle and financial stress," CEPR Discussion Papers 11599, C.E.P.R. Discussion Papers.
  71. Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
  72. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
  73. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers 07-19, Association Française de Cliométrie (AFC).
  74. Gaete, Michael & Herrera, Rodrigo, 2023. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," Journal of Commodity Markets, Elsevier, vol. 32(C).
  75. Virbickaitė, Audronė & Nguyen, Hoang & Tran, Minh-Ngoc, 2023. "Bayesian predictive distributions of oil returns using mixed data sampling volatility models," Resources Policy, Elsevier, vol. 86(PA).
  76. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
  77. Hafner, Christian M. & Wang, Linqi, 2023. "A dynamic conditional score model for the log correlation matrix," Journal of Econometrics, Elsevier, vol. 237(2).
  78. Triki, Mohamed Bilel & Ben Maatoug, Abderrazek, 2021. "The GOLD market as a safe haven against the stock market uncertainty: Evidence from geopolitical risk," Resources Policy, Elsevier, vol. 70(C).
  79. Creal, Drew & Koopman, Siem Jan & Lucas, André & Zamojski, Marcin, 2024. "Observation-driven filtering of time-varying parameters using moment conditions," Journal of Econometrics, Elsevier, vol. 238(2).
  80. Deniz Erer, 2023. "The Impact of News Related Covid-19 on Exchange Rate Volatility:A New Evidence From Generalized Autoregressive Score Model," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 105-126, June.
  81. Xu, Yingying & Lien, Donald, 2022. "COVID-19 and currency dependences: Empirical evidence from BRICS," Finance Research Letters, Elsevier, vol. 45(C).
  82. Hannes Böhm & Julia Schaumburg & Lena Tonzer, 2022. "Financial Linkages and Sectoral Business Cycle Synchronization: Evidence from Europe," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 698-734, December.
  83. Ito, Ryoko, 2013. "Modeling Dynamic Diurnal Patterns in High-Frequency Financial Data," Cambridge Working Papers in Economics 1315, Faculty of Economics, University of Cambridge.
  84. Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
  85. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2017. "Relation between higher order comoments and dependence structure of equity portfolio," Journal of Empirical Finance, Elsevier, vol. 40(C), pages 101-120.
  86. Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
  87. André Lucas & Bernd Schwaab & Xin Zhang, 2017. "Modeling Financial Sector Joint Tail Risk in the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 171-191, January.
  88. Blazsek, Szabolcs & Licht, Adrian, 2019. "Co-integration and common trends analysis with score-driven models : an application to the federal funds effective rate and US inflation rate," UC3M Working papers. Economics 28451, Universidad Carlos III de Madrid. Departamento de Economía.
  89. Anne Opschoor & André Lucas & István Barra & Dick van Dijk, 2021. "Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1066-1079, October.
  90. Gong, Yuting & He, Zhongzhi & Xue, Wenjun, 2022. "EPU spillovers and stock return predictability: A cross-country study," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
  91. Cem Cakmakli & Yasin Simsek, 2020. "Bridging the COVID-19 Data and the Epidemiological Model using Time Varying Parameter SIRD Model," Papers 2007.02726, arXiv.org, revised Feb 2021.
  92. Blasques, Francisco & Koopman, Siem Jan & Nientker, Marc, 2022. "A time-varying parameter model for local explosions," Journal of Econometrics, Elsevier, vol. 227(1), pages 65-84.
  93. Leopoldo Catania & Stefano Grassi, 2017. "Modelling Crypto-Currencies Financial Time-Series," CEIS Research Paper 417, Tor Vergata University, CEIS, revised 11 Dec 2017.
  94. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Birkbeck Working Papers in Economics and Finance 1409, Birkbeck, Department of Economics, Mathematics & Statistics.
  95. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
  96. P. Gorgi & Siem Jan (S.J.) Koopman & R. Lit, 2018. "The analysis and forecasting of ATP tennis matches using a high-dimensional dynamic model," Tinbergen Institute Discussion Papers 18-009/III, Tinbergen Institute.
  97. Alexander Georges Gretener & Matthias Neuenkirch & Dennis Umlandt, 2022. "Dynamic Mixture Vector Autoregressions with Score-Driven Weights," Working Paper Series 2022-02, University of Trier, Research Group Quantitative Finance and Risk Analysis.
  98. Fiorentini, Gabriele & Sentana, Enrique, 2021. "New testing approaches for mean–variance predictability," Journal of Econometrics, Elsevier, vol. 222(1), pages 516-538.
  99. Abdelkamel Alj & Christophe Ley & Guy Melard, 2015. "Asymptotic Properties of QML Estimators for VARMA Models with Time-Dependent Coefficients: Part I," Working Papers ECARES ECARES 2015-21, ULB -- Universite Libre de Bruxelles.
  100. Sucarrat, Genaro & Grønneberg, Steffen, 2016. "Models of Financial Return With Time-Varying Zero Probability," MPRA Paper 68931, University Library of Munich, Germany.
  101. Telg, Sean & Dubinova, Anna & Lucas, Andre, 2023. "Covid-19, credit risk management modeling, and government support," Journal of Banking & Finance, Elsevier, vol. 147(C).
  102. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
  103. Anne Opschoor & André Lucas, 2019. "Observation-driven Models for Realized Variances and Overnight Returns," Tinbergen Institute Discussion Papers 19-052/IV, Tinbergen Institute.
  104. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
  105. Ilya Archakov & Peter Reinhard Hansen, 2021. "A New Parametrization of Correlation Matrices," Econometrica, Econometric Society, vol. 89(4), pages 1699-1715, July.
  106. Bose, Udichibarna & MacDonald, Ronald & Tsoukas, Serafeim, 2014. "The role of education in equity portfolios during the recent financial crisis," SIRE Discussion Papers 2015-26, Scottish Institute for Research in Economics (SIRE).
  107. Laurent Callot & Johannes Tang Kristensen, 2014. "Vector Autoregressions with Parsimoniously Time Varying Parameters and an Application to Monetary Policy," CREATES Research Papers 2014-41, Department of Economics and Business Economics, Aarhus University.
  108. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).
  109. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
  110. Drew Creal & Bernd Schwaab & Siem Jan Koopman & Andr� Lucas, 2014. "Observation-Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 898-915, December.
  111. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
  112. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
  113. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
  114. Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2017. "Accelerating GARCH and Score-Driven Models: Optimality, Estimation and Forecasting," Tinbergen Institute Discussion Papers 17-059/III, Tinbergen Institute.
  115. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).
  116. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  117. Bernd Schwaab, 2012. "Conditional probabilities and contagion measures for euro area sovereign default risk," Research Bulletin, European Central Bank, vol. 17, pages 6-11.
  118. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
  119. Elena Ivona Dumitrescu & Georgiana-Denisa Banulescu, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," Post-Print hal-03331122, HAL.
  120. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
  121. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  122. Vassallo, Danilo & Buccheri, Giuseppe & Corsi, Fulvio, 2021. "A DCC-type approach for realized covariance modeling with score-driven dynamics," International Journal of Forecasting, Elsevier, vol. 37(2), pages 569-586.
  123. Enilov, Martin & Mensi, Walid & Stankov, Petar, 2023. "Does safe haven exist? Tail risks of commodity markets during COVID-19 pandemic," Journal of Commodity Markets, Elsevier, vol. 29(C).
  124. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
  125. Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
  126. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
  127. F. Lilla, 2017. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models - 2nd ed," Working Papers wp1099, Dipartimento Scienze Economiche, Universita' di Bologna.
  128. Jian, Zhihong & Li, Xupei & Zhu, Zhican, 2020. "Sequential forecasting of downside extreme risk during overnight and daytime: Evidence from the Chinese Stock Market☆," Pacific-Basin Finance Journal, Elsevier, vol. 64(C).
  129. Yang, Lu & Hamori, Shigeyuki, 2021. "The role of the carbon market in relation to the cryptocurrency market: Only diversification or more?," International Review of Financial Analysis, Elsevier, vol. 77(C).
  130. Bingduo Yang & Zongwu Cai & Christian M. Hafner & Guannan Liu, 2018. "Trending Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201809, University of Kansas, Department of Economics, revised Sep 2018.
  131. Leopoldo Catania & Alessandra Luati & Pierluigi Vallarino, 2021. "Economic vulnerability is state dependent," CREATES Research Papers 2021-09, Department of Economics and Business Economics, Aarhus University.
  132. Harvey, A. & Hurn, S. & Thiele, S., 2019. "Modeling directional (circular) time series," Cambridge Working Papers in Economics 1971, Faculty of Economics, University of Cambridge.
  133. Anna Gloria Billé & Leopoldo Catania, 2018. "Dynamic Spatial Autoregressive Models with Time-varying Spatial Weighting Matrices," BEMPS - Bozen Economics & Management Paper Series BEMPS55, Faculty of Economics and Management at the Free University of Bozen.
  134. Zhang, Guofu & Liu, Wei, 2018. "Analysis of the international propagation of contagion between oil and stock markets," Energy, Elsevier, vol. 165(PA), pages 469-486.
  135. Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
  136. Anna Dubinova & Andre Lucas & Sean Telg, 2021. "COVID-19, Credit Risk and Macro Fundamentals," Tinbergen Institute Discussion Papers 21-059/III, Tinbergen Institute.
  137. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
  138. Wolf, Elias, 2022. "Estimating growth at risk with skewed stochastic volatility models," Discussion Papers 2022/2, Free University Berlin, School of Business & Economics.
  139. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
  140. Manabu Asai & Mike K. P. So, 2021. "Quasi‐maximum likelihood estimation of conditional autoregressive Wishart models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(3), pages 271-294, May.
  141. Kazim Azam & Andre Lucas, 2015. "Mixed Density based Copula Likelihood," Tinbergen Institute Discussion Papers 15-003/IV/DSF084, Tinbergen Institute.
  142. Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016. "Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
  143. Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
  144. Francq, Christian & Zakoian, Jean-Michel, 2023. "Local Asymptotic Normality Of General Conditionally Heteroskedastic And Score-Driven Time-Series Models," Econometric Theory, Cambridge University Press, vol. 39(5), pages 1067-1092, October.
  145. Creal, Drew D. & Wu, Jing Cynthia, 2015. "Estimation of affine term structure models with spanned or unspanned stochastic volatility," Journal of Econometrics, Elsevier, vol. 185(1), pages 60-81.
  146. Christian Conrad & Robert F. Engle, 2021. "Modelling Volatility Cycles: The (MF)2 GARCH Model," Working Paper series 21-05, Rimini Centre for Economic Analysis.
  147. Wen, Xiaoqian & Cheng, Hua, 2018. "Which is the safe haven for emerging stock markets, gold or the US dollar?," Emerging Markets Review, Elsevier, vol. 35(C), pages 69-90.
  148. André Lucas & Bernd Schwaab & Xin Zhang, 2014. "Conditional Euro Area Sovereign Default Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 271-284, April.
  149. Luca Vincenzo Ballestra & Enzo D’Innocenzo & Andrea Guizzardi, 2024. "Score-Driven Modeling with Jumps: An Application to S&P500 Returns and Options," Journal of Financial Econometrics, Oxford University Press, vol. 22(2), pages 375-406.
  150. John Weirstrass Muteba Mwamba & Ehounou Serge Eloge Florentin Angaman, 2021. "Modeling System Risk in the South African Insurance Sector: A Dynamic Mixture Copula Approach," IJFS, MDPI, vol. 9(2), pages 1-17, May.
  151. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
  152. Angelini, Giovanni & Gorgi, Paolo, 2018. "DSGE Models with observation-driven time-varying volatility," Economics Letters, Elsevier, vol. 171(C), pages 169-171.
  153. Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
  154. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
  155. Jean-Claude Hessing & Rutger-Jan Lange & Daniel Ralph, 2022. "This article establishes the Poisson optional stopping times (POST) method by Lange et al. (2020) as a near-universal method for solving liquidity-constrained American options, or, equivalently, penal," Tinbergen Institute Discussion Papers 22-007/IV, Tinbergen Institute.
  156. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
  157. Blasques, Francisco & Nientker, Marc, 2023. "Stochastic properties of nonlinear locally-nonstationary filters," Journal of Econometrics, Elsevier, vol. 235(2), pages 2082-2095.
  158. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Correlated Defaults of UK Banks: Dynamics and Asymmetries," Working Papers 2015_24, Business School - Economics, University of Glasgow.
  159. Hoeltgebaum, Henrique & Borenstein, Denis & Fernandes, Cristiano & Veiga, Álvaro, 2021. "A score-driven model of short-term demand forecasting for retail distribution centers," Journal of Retailing, Elsevier, vol. 97(4), pages 715-725.
  160. Gao, Chun-Ting & Zhou, Xiao-Hua, 2016. "Forecasting VaR and ES using dynamic conditional score models and skew Student distribution," Economic Modelling, Elsevier, vol. 53(C), pages 216-223.
  161. Gkillas, Konstantinos & Konstantatos, Christoforos & Papathanasiou, Spyros & Wohar, Mark, 2023. "Estimation of value at risk for copper," Journal of Commodity Markets, Elsevier, vol. 32(C).
  162. Wen, Xiaoqian & Xie, Yuxin & Pantelous, Athanasios A., 2022. "Extreme price co-movement of commodity futures and industrial production growth: An empirical evaluation," Energy Economics, Elsevier, vol. 108(C).
  163. Zheng, Tingguo & Ye, Shiqi & Hong, Yongmiao, 2023. "Fast estimation of a large TVP-VAR model with score-driven volatilities," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).
  164. Han, Yingwei & Li, Jie, 2022. "Should investors include green bonds in their portfolios? Evidence for the USA and Europe," International Review of Financial Analysis, Elsevier, vol. 80(C).
  165. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
  166. Dong Hwan Oh & Andrew J. Patton, 2021. "Dynamic Factor Copula Models with Estimated Cluster Assignments," Finance and Economics Discussion Series 2021-029r1, Board of Governors of the Federal Reserve System (U.S.), revised 06 May 2022.
  167. Andre Lucas & Anne Opschoor, 2016. "Fractional Integration and Fat Tails for Realized Covariance Kernels and Returns," Tinbergen Institute Discussion Papers 16-069/IV, Tinbergen Institute, revised 07 Jul 2017.
  168. Blazsek, Szabolcs & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de Economía.
  169. Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
  170. Bai, Xiwen & Kavussanos, Manolis G., 2022. "Hedging IMO2020 compliant fuel price exposure using futures contracts," Energy Economics, Elsevier, vol. 110(C).
  171. Lu Yang & Jason Z. Ma & Shigeyuki Hamori, 2018. "Dependence Structures and Systemic Risk of Government Securities Markets in Central and Eastern Europe: A CoVaR-Copula Approach," Sustainability, MDPI, vol. 10(2), pages 1-23, January.
  172. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci de Magistris, 2016. "Volatility Jumps and Their Economic Determinants," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 29-80.
  173. Giuseppe Buccheri & Stefano Grassi & Giorgio Vocalelli, 2021. "Estimating Risk in Illiquid Markets: a Model of Market Friction with Stochastic Volatility," CEIS Research Paper 506, Tor Vergata University, CEIS, revised 08 Nov 2021.
  174. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
  175. Grassi, Stefano & Santucci de Magistris, Paolo, 2015. "It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
  176. Javier Ojea Ferreiro, 2018. "Contagion spillovers between sovereign and financial European sector from a Delta CoVaR approach," Documentos de Trabajo del ICAE 2018-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  177. Francesco Calvori & Fabrizio Cipollini & Giampiero M. Gallo, 2014. "Go with the Flow: A GAS model for Predicting Intra-daily Volume Shares," Econometrics Working Papers Archive 2014_01, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Feb 2014.
  178. Dickhaus, Thorsten & Sirotko-Sibirskaya, Natalia, 2019. "Simultaneous statistical inference in dynamic factor models: Chi-square approximation and model-based bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 30-46.
  179. Tobias Eckernkemper & Bastian Gribisch, 2021. "Intraday conditional value at risk: A periodic mixed‐frequency generalized autoregressive score approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 883-910, August.
  180. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.
  181. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
  182. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
  183. Michael Curran & Patrick O'Sullivan & Ryan Zalla, 2020. "Can Volatility Solve the Naive Portfolio Puzzle?," Papers 2005.03204, arXiv.org, revised Feb 2022.
  184. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
  185. Enzo D’Innocenzo & André Lucas & Bernd Schwaab & Xin Zhang, 2024. "Modeling Extreme Events: Time-Varying Extreme Tail Shape," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 903-917, July.
  186. Ames, Matthew & Bagnarosa, Guillaume & Peters, Gareth W., 2017. "Violations of uncovered interest rate parity and international exchange rate dependences," Journal of International Money and Finance, Elsevier, vol. 73(PA), pages 162-187.
  187. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
  188. Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
  189. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
  190. Niţoi, Mihai & Pochea, Maria Miruna, 2020. "Time-varying dependence in European equity markets: A contagion and investor sentiment driven analysis," Economic Modelling, Elsevier, vol. 86(C), pages 133-147.
  191. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
  192. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
  193. Carnero M. Angeles & Pérez Ana, 2021. "Outliers and misleading leverage effect in asymmetric GARCH-type models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(1), pages 1-19, February.
  194. Ioanna-Yvonni Tsaknaki & Fabrizio Lillo & Piero Mazzarisi, 2023. "Online Learning of Order Flow and Market Impact with Bayesian Change-Point Detection Methods," Papers 2307.02375, arXiv.org, revised May 2024.
  195. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
  196. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
  197. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
  198. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
  199. Bogdan, Dima & Ştefana Maria, Dima & Roxana, Ioan, 2022. "A Value-at-Risk forecastability indicator in the framework of a Generalized Autoregressive Score with “Asymmetric Laplace Distribution”," Finance Research Letters, Elsevier, vol. 45(C).
  200. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
  201. M. Caivano & A. Harvey, 2013. "Two EGARCH models and one fat tail," Cambridge Working Papers in Economics 1326, Faculty of Economics, University of Cambridge.
  202. Blasques, Francisco & Hoogerkamp, Meindert Heres & Koopman, Siem Jan & van de Werve, Ilka, 2021. "Dynamic factor models with clustered loadings: Forecasting education flows using unemployment data," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1426-1441.
  203. Ouyang, Ruolan & Chen, Xiang & Fang, Yi & Zhao, Yang, 2022. "Systemic risk of commodity markets: A dynamic factor copula approach," International Review of Financial Analysis, Elsevier, vol. 82(C).
  204. Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
  205. Liu, Wei & Semeyutin, Artur & Lau, Chi Keung Marco & Gozgor, Giray, 2020. "Forecasting Value-at-Risk of Cryptocurrencies with RiskMetrics type models," Research in International Business and Finance, Elsevier, vol. 54(C).
  206. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
  207. Harvey, Andrew & Hurn, Stan & Palumbo, Dario & Thiele, Stephen, 2024. "Modelling circular time series," Journal of Econometrics, Elsevier, vol. 239(1).
  208. Ramon de Punder & Timo Dimitriadis & Rutger-Jan Lange, 2024. "Kullback-Leibler-based characterizations of score-driven updates," Papers 2408.02391, arXiv.org, revised Sep 2024.
  209. Francq, Christian & Zakoian, Jean-Michel, 2021. "Testing the existence of moments and estimating the tail index of augmented garch processes," MPRA Paper 110511, University Library of Munich, Germany.
  210. Giuseppe Storti & Chao Wang, 2021. "Modelling uncertainty in financial tail risk: a forecast combination and weighted quantile approach," Papers 2104.04918, arXiv.org, revised Jul 2021.
  211. Drew Creal & Siem Jan Koopman & André Lucas, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 552-563, October.
  212. Lucas, André & Zhang, Xin, 2016. "Score-driven exponentially weighted moving averages and Value-at-Risk forecasting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
  213. Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
  214. Stephen Thiele, 2020. "Modeling the conditional distribution of financial returns with asymmetric tails," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 46-60, January.
  215. Leopoldo Catania & Mads Sandholdt, 2019. "Bitcoin at High Frequency," JRFM, MDPI, vol. 12(1), pages 1-20, February.
  216. Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
  217. Matthias Pelster & Johannes Vilsmeier, 2018. "The determinants of CDS spreads: evidence from the model space," Review of Derivatives Research, Springer, vol. 21(1), pages 63-118, April.
  218. Stephanie Danielle Subramoney & Knowledge Chinhamu & Retius Chifurira, 2021. "Value at Risk estimation using GAS models with heavy tailed distributions for cryptocurrencies," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 40-54, October.
  219. Massimiliano Caporin & Eduardo Rossi & Paolo Santucci De Magistris, 2014. "Chasing Volatility. A Persistent Multiplicative Error Model With Jumps," "Marco Fanno" Working Papers 0186, Dipartimento di Scienze Economiche "Marco Fanno".
  220. Gavronski, Pedro Gerhardt & Ziegelmann, Flavio A., 2021. "Measuring systemic risk via GAS models and extreme value theory: Revisiting the 2007 financial crisis," Finance Research Letters, Elsevier, vol. 38(C).
  221. André Lucas & Julia Schaumburg & Bernd Schwaab, 2019. "Bank Business Models at Zero Interest Rates," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 542-555, July.
  222. Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
  223. Francisco Blasques & Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Zero-Inflated Autoregressive Conditional Duration Model for Discrete Trade Durations with Excessive Zeros," Papers 1812.07318, arXiv.org, revised May 2024.
  224. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
  225. Zhao, Zifeng & Zhang, Zhengjun & Chen, Rong, 2018. "Modeling maxima with autoregressive conditional Fréchet model," Journal of Econometrics, Elsevier, vol. 207(2), pages 325-351.
  226. Zongwu Cai & Ying Fang & Dingshi Tian, 2024. "CAViaR Model Selection Via Adaptive Lasso," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202403, University of Kansas, Department of Economics, revised Jan 2024.
  227. Dennis Umlandt, 2020. "Likelihood-based Dynamic Asset Pricing: Learning Time-varying Risk Premia from Cross-Sectional Models," Working Paper Series 2020-06, University of Trier, Research Group Quantitative Finance and Risk Analysis.
  228. Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
  229. Lucas, André & Opschoor, Anne & Schaumburg, Julia, 2016. "Accounting for missing values in score-driven time-varying parameter models," Economics Letters, Elsevier, vol. 148(C), pages 96-98.
  230. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.
  231. Djennad, Abdelmajid & Rigby, Robert & Stasinopoulos, Dimitrios & Voudouris, Vlasios & Eilers, Paul, 2015. "Beyond location and dispersion models: The Generalized Structural Time Series Model with Applications," MPRA Paper 62807, University Library of Munich, Germany.
  232. Carlo Campajola & Domenico Di Gangi & Fabrizio Lillo & Daniele Tantari, 2020. "Modelling time-varying interactions in complex systems: the Score Driven Kinetic Ising Model," Papers 2007.15545, arXiv.org, revised Aug 2021.
  233. Wang, Jie & Xue, Weina & Song, Jiashan, 2022. "Economic policy uncertainty and industry risk on China’s stock market," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
  234. Babii, Andrii & Chen, Xi & Ghysels, Eric, 2019. "Commercial and Residential Mortgage Defaults: Spatial Dependence with Frailty," Journal of Econometrics, Elsevier, vol. 212(1), pages 47-77.
  235. Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
  236. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
  237. M. Karanasos & S. Yfanti & A. Christopoulos, 2021. "The long memory HEAVY process: modeling and forecasting financial volatility," Annals of Operations Research, Springer, vol. 306(1), pages 111-130, November.
  238. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2014. "Modeling Dependence Structure and Forecasting Portfolio Value-at-Risk with Dynamic Copulas," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-25, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  239. Algaba, Andres & Borms, Samuel & Boudt, Kris & Verbeken, Brecht, 2023. "Daily news sentiment and monthly surveys: A mixed-frequency dynamic factor model for nowcasting consumer confidence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 266-278.
  240. Zhang, Hanyu & Dufour, Alfonso, 2019. "Modeling intraday volatility of European bond markets: A data filtering application," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 131-146.
  241. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
  242. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
  243. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
  244. Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
  245. Karim M Abadir, 2023. "Explicit minimal representation of variance matrices, and its implication for dynamic volatility models," The Econometrics Journal, Royal Economic Society, vol. 26(1), pages 88-104.
  246. Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
  247. F. Blasques & P. Gorgi & S. J. Koopman & J. Sampi, 2023. "Does trade integration imply growth in Latin America? Evidence from a dynamic spatial spillover model," Tinbergen Institute Discussion Papers 23-007/IVI, Tinbergen Institute.
  248. Schwaab, Bernd & Lucas, André & Zhang, Xin, 2013. "Conditional and joint credit risk," Working Paper Series 1621, European Central Bank.
  249. Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016. "In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
  250. Holý, Vladimír, 2024. "Ranking-based second stage in data envelopment analysis: An application to research efficiency in higher education," Operations Research Perspectives, Elsevier, vol. 12(C).
  251. Enzo D'Innocenzo & André Lucas & Anne Opschoor & Xingmin Zhang, 2024. "Heterogeneity and dynamics in network models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 150-173, January.
  252. Harvey, A. & Simons, J., 2024. "Hidden Threshold Models with applications to asymmetric cycles," Cambridge Working Papers in Economics 2448, Faculty of Economics, University of Cambridge.
  253. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
  254. Mensah, Jones Odei & Alagidede, Paul, 2017. "How are Africa's emerging stock markets related to advanced markets? Evidence from copulas," Economic Modelling, Elsevier, vol. 60(C), pages 1-10.
  255. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
  256. Georgiana-Denisa Banulescu & Bertrand Candelon & Christophe Hurlin & Sébastien Laurent, 2014. "Do We Need Ultra-High Frequency Data to Forecast Variances?," Working Papers halshs-01078158, HAL.
  257. Mariana Arozo B. de Melo & Cristiano A. C. Fernandes & Eduardo F. L. de Melo, 2018. "Forecasting aggregate claims using score‐driven time series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 354-374, August.
  258. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de Economía.
  259. Saverio Ranciati & Alberto Roverato & Alessandra Luati, 2021. "Fused graphical lasso for brain networks with symmetries," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1299-1322, November.
  260. Vladimír Holý & Jan Zouhar, 2022. "Modelling time‐varying rankings with autoregressive and score‐driven dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1427-1450, November.
  261. Anne Opschoor & André Lucas, 2019. "Time-varying tail behavior for realized kernels," Tinbergen Institute Discussion Papers 19-051/IV, Tinbergen Institute.
  262. Zhicheng Liang & Junwei Wang & Kin Keung Lai, 2020. "Dependence Structure Analysis and VaR Estimation Based on China’s and International Gold Price: A Copula Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 169-193, February.
  263. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
  264. Lu, Yunzhi & Li, Jie & Yang, Haisheng, 2021. "Time-varying inter-urban housing price spillovers in China: Causes and consequences," Journal of Asian Economics, Elsevier, vol. 77(C).
  265. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
  266. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
  267. Chen Tong & Peter Reinhard Hansen & Zhuo Huang, 2022. "Option pricing with state‐dependent pricing kernel," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1409-1433, August.
  268. Raffaele Mattera, 2023. "Forecasting binary outcomes in soccer," Annals of Operations Research, Springer, vol. 325(1), pages 115-134, June.
  269. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
  270. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
  271. Alanya-Beltran Willy, 2023. "Modelling volatility dependence with score copula models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(5), pages 649-668, December.
  272. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
  273. Szabolcs Blazsek & William M. Dos Santos & Andreco S. Edwards, 2024. "Score-Driven Interactions for “Disease X” Using COVID and Non-COVID Mortality," Econometrics, MDPI, vol. 12(3), pages 1-24, September.
  274. Krist'of N'emeth & D'aniel Hadh'azi, 2024. "Generating density nowcasts for U.S. GDP growth with deep learning: Bayes by Backprop and Monte Carlo dropout," Papers 2405.15579, arXiv.org.
  275. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
  276. Caporin, Massimiliano & Rossi, Eduardo & Santucci de Magistris, Paolo, 2017. "Chasing volatility," Journal of Econometrics, Elsevier, vol. 198(1), pages 122-145.
  277. Bai, Xiwen, 2021. "Tanker freight rates and economic policy uncertainty: A wavelet-based copula approach," Energy, Elsevier, vol. 235(C).
  278. Eric Beutner & Alexander Heinemann & Stephan Smeekes, 2017. "A Justification of Conditional Confidence Intervals," Papers 1710.00643, arXiv.org, revised Jan 2019.
  279. Andrew Harvey & Dario Palumbo, 2023. "Regime switching models for circular and linear time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 374-392, July.
  280. Yinhao Wu & Ping He, 2024. "The continuous-time limit of quasi score-driven volatility models," Papers 2409.14734, arXiv.org.
  281. Blasques, F. & Gorgi, P. & Koopman, S.J., 2021. "Missing observations in observation-driven time series models," Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
  282. Blazsek, Szabolcs & Licht, Adrian, 2020. "Prediction accuracy of bivariate score-driven risk premium and volatility filters: an illustration for the Dow Jones," UC3M Working papers. Economics 31339, Universidad Carlos III de Madrid. Departamento de Economía.
  283. Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
  284. Tsyplakov, Alexander, 2015. "Quasifiltering for time-series modeling," MPRA Paper 66453, University Library of Munich, Germany.
  285. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
  286. Domenico Di Gangi & Giacomo Bormetti & Fabrizio Lillo, 2022. "Score Driven Generalized Fitness Model for Sparse and Weighted Temporal Networks," Papers 2202.09854, arXiv.org, revised Mar 2022.
  287. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
  288. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers of BETA 2019-43, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
  289. Francisco Blasques & Enzo D'Innocenzo & Siem Jan Koopman, 2021. "Common and Idiosyncratic Conditional Volatility Factors: Theory and Empirical Evidence," Tinbergen Institute Discussion Papers 21-057/III, Tinbergen Institute.
  290. Wolf, Elias, 2023. "Estimating Growth at Risk with Skewed Stochastic Volatility Models," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277696, Verein für Socialpolitik / German Economic Association.
  291. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
  292. Paul Labonne, 2022. "Asymmetric Uncertainty: Nowcasting Using Skewness in Real-time Data," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-23, Economic Statistics Centre of Excellence (ESCoE).
  293. Sheng Fang & Paul Egan, 2021. "Tail dependence between oil prices and China's A‐shares: Evidence from firm‐level data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1469-1487, January.
  294. Blazsek Szabolcs & Escribano Alvaro & Licht Adrian, 2021. "Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 53-66, January.
  295. Harvey, Andrew & Thiele, Stephen, 2016. "Testing against changing correlation," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 575-589.
  296. Zhang, Xuan & Kim, Minjoo & Yan, Cheng & Zhao, Yang, 2024. "Default dependence in the insurance and banking sectors: A copula approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
  297. F. Lilla, 2016. "High Frequency vs. Daily Resolution: the Economic Value of Forecasting Volatility Models," Working Papers wp1084, Dipartimento Scienze Economiche, Universita' di Bologna.
  298. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
  299. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
  300. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
  301. repec:kan:wpaper:202105 is not listed on IDEAS
  302. Katarzyna Łasak & Johannes Lont, 2020. "Observation Driven Long Run Equilibria," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 551-575, February.
  303. Ostap Okhrin & Anastasija Tetereva, 2017. "The Realized Hierarchical Archimedean Copula in Risk Modelling," Econometrics, MDPI, vol. 5(2), pages 1-31, June.
  304. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
  305. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Dependence structure in the Australian electricity markets: New evidence from regular vine copulae," Energy Economics, Elsevier, vol. 90(C).
  306. Mohamed El Ghourabi & Asma Nani & Imed Gammoudi, 2021. "A value‐at‐risk computation based on heavy‐tailed distribution for dynamic conditional score models," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2790-2799, April.
  307. Candia, Claudio & Herrera, Rodrigo, 2024. "An empirical review of dynamic extreme value models for forecasting value at risk, expected shortfall and expectile," Journal of Empirical Finance, Elsevier, vol. 77(C).
  308. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
  309. Ouyang, Ruolan & Zhuang, Chengkai & Wang, Tingting & Zhang, Xuan, 2022. "Network analysis of risk transmission among energy futures: An industrial chain perspective," Energy Economics, Elsevier, vol. 107(C).
  310. Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
  311. Man Wang & Yihan Cheng, 2022. "Forecasting value at risk and expected shortfall using high‐frequency data of domestic and international stock markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1595-1607, December.
  312. Shijia Song & Handong Li, 2023. "A new model for forecasting VaR and ES using intraday returns aggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1039-1054, August.
  313. Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
  314. Harvey, Andew & Liao, Yin, 2023. "Dynamic Tobit models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 72-83.
  315. Bei, Zeyun & Lin, Juan & Zhou, Yinggang, 2024. "No safe haven, only diversification and contagion — Intraday evidence around the COVID-19 pandemic," Journal of International Money and Finance, Elsevier, vol. 143(C).
  316. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
  317. repec:wrk:wrkemf:13 is not listed on IDEAS
  318. Lin, Min-Bin & Wang, Bingling & Bocart, Fabian Y.R.P. & Hafner, Christian M. & Härdle, Wolfgang K., 2022. "DAI Digital Art Index : a robust price index for heterogeneous digital assets," LIDAM Discussion Papers ISBA 2022036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  319. Enzo D'Innocenzo & Andre Lucas & Bernd Schwaab & Xin Zhang, 2024. "Joint extreme Value-at-Risk and Expected Shortfall dynamics with a single integrated tail shape parameter," Tinbergen Institute Discussion Papers 24-069/III, Tinbergen Institute.
  320. Marco Piña & Rodrigo Herrera, 2021. "Risk modeling with option-implied correlations and score-driven dynamics," Working Papers Central Bank of Chile 932, Central Bank of Chile.
  321. Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2022. "Implicit score-driven filters for time-varying parameter models," Tinbergen Institute Discussion Papers 22-066/III, Tinbergen Institute, revised 21 Nov 2024.
  322. Yu‐Sheng Lai, 2021. "Generalized autoregressive score model with high‐frequency data for optimal futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 2023-2045, December.
  323. Timo Dimitriadis & Julie Schnaitmann, 2019. "Forecast Encompassing Tests for the Expected Shortfall," Papers 1908.04569, arXiv.org, revised Aug 2020.
  324. Ayala Astrid & Blazsek Szabolcs & Escribano Alvaro, 2023. "Anticipating extreme losses using score-driven shape filters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(4), pages 449-484, September.
  325. Anufriev, Mikhail & Panchenko, Valentyn, 2015. "Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 241-255.
  326. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
  327. Bahcivan, Hulusi & Karahan, Cenk C., 2022. "High frequency correlation dynamics and day-of-the-week effect: A score-driven approach in an emerging market stock exchange," International Review of Financial Analysis, Elsevier, vol. 80(C).
  328. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
  329. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
  330. Lin Zhao & Sweder van Wijnbergen, 2017. "Decision-making in incomplete markets with ambiguity—a case study of a gas field acquisition," Quantitative Finance, Taylor & Francis Journals, vol. 17(11), pages 1759-1782, November.
  331. Giovanni Angelini & Paolo Gorgi, 2018. "DSGE Models with Observation-Driven Time-Varying parameters," Tinbergen Institute Discussion Papers 18-030/III, Tinbergen Institute.
  332. Opschoor, Anne & Lucas, André, 2023. "Time-varying variance and skewness in realized volatility measures," International Journal of Forecasting, Elsevier, vol. 39(2), pages 827-840.
  333. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
  334. repec:cte:wsrepe:ws142618 is not listed on IDEAS
  335. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
  336. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
  337. Francisco (F.) Blasques & Marc Nientker, 2017. "A Stochastic Recurrence Equation Approach to Stationarity and phi-Mixing of a Class of Nonlinear ARCH Models," Tinbergen Institute Discussion Papers 17-072/III, Tinbergen Institute.
  338. Tobias Fissler & Yannick Hoga, 2021. "Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability," Papers 2104.10673, arXiv.org, revised Feb 2022.
  339. Alanya-Beltran, Willy, 2022. "Modelling stock returns volatility with dynamic conditional score models and random shifts," Finance Research Letters, Elsevier, vol. 45(C).
  340. Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
  341. Stavroula Yfanti & Georgios Chortareas & Menelaos Karanasos & Emmanouil Noikokyris, 2022. "A three‐dimensional asymmetric power HEAVY model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 2737-2761, July.
  342. Hiroyuki Kawakatsu, 2022. "Modeling Realized Variance with Realized Quarticity," Stats, MDPI, vol. 5(3), pages 1-25, September.
  343. Zhang, Ning & Su, Xiaoman & Qi, Shuyuan, 2023. "An empirical investigation of multiperiod tail risk forecasting models," International Review of Financial Analysis, Elsevier, vol. 86(C).
  344. Andrew Harvey & Rutger-Jan Lange, 2015. "Modeling the Interactions between Volatility and Returns," Cambridge Working Papers in Economics 1518, Faculty of Economics, University of Cambridge.
  345. Oh, Dong Hwan & Patton, Andrew J., 2023. "Dynamic factor copula models with estimated cluster assignments," Journal of Econometrics, Elsevier, vol. 237(2).
  346. Caterina Schiavoni & Siem Jan Koopman & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "Time-varying state correlations in state space models and their estimation via indirect inference," Tinbergen Institute Discussion Papers 21-020/III, Tinbergen Institute.
  347. Storti, Giuseppe & Wang, Chao, 2022. "A multivariate semi-parametric portfolio risk optimization and forecasting framework," MPRA Paper 115266, University Library of Munich, Germany.
  348. Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
  349. Opschoor, Anne & Lucas, André, 2021. "Observation-driven models for realized variances and overnight returns applied to Value-at-Risk and Expected Shortfall forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 622-633.
  350. Rakesh K. Bissoondeeal & Leonidas Tsiaras, 2023. "Investigating the Links between UK House Prices and Share Prices with Copulas," The Journal of Real Estate Finance and Economics, Springer, vol. 67(3), pages 423-452, October.
  351. Harvey, Andrew & Ito, Ryoko, 2020. "Modeling time series when some observations are zero," Journal of Econometrics, Elsevier, vol. 214(1), pages 33-45.
  352. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
  353. Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
  354. D’Innocenzo, Enzo & Lucas, Andre, 2024. "Dynamic partial correlation models," Journal of Econometrics, Elsevier, vol. 241(2).
  355. Fabio Busetti & Michele Caivano & Lisa Rodano, 2015. "On the conditional distribution of euro area inflation forecast," Temi di discussione (Economic working papers) 1027, Bank of Italy, Economic Research and International Relations Area.
  356. Giampiero Gallo & Ostap Okhrin & Giuseppe Storti, 2024. "Dynamic tail risk forecasting: what do realized skewness and kurtosis add?," Papers 2409.13516, arXiv.org.
  357. Lazar, Emese & Pan, Jingqi & Wang, Shixuan, 2024. "On the estimation of Value-at-Risk and Expected Shortfall at extreme levels," Journal of Commodity Markets, Elsevier, vol. 34(C).
  358. Martin Weale & Paul Labonne, 2022. "Nowcasting in the presence of large measurement errors and revisions," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-05, Economic Statistics Centre of Excellence (ESCoE).
  359. Fabrizio Cipollini & Giampiero M. Gallo, 2021. "Multiplicative Error Models: 20 years on," Papers 2107.05923, arXiv.org.
  360. Bruzda, Joanna, 2020. "Demand forecasting under fill rate constraints—The case of re-order points," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1342-1361.
  361. Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
  362. Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2018. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics," Papers 1803.04894, arXiv.org, revised Mar 2019.
  363. Jiang, Kunliang & Zeng, Linhui & Song, Jiashan & Liu, Yimeng, 2022. "Forecasting Value-at-Risk of cryptocurrencies using the time-varying mixture-accelerating generalized autoregressive score model," Research in International Business and Finance, Elsevier, vol. 61(C).
  364. Li, Haiping & Semeyutin, Artur & Lau, Chi Keung Marco & Gozgor, Giray, 2020. "The relationship between oil and financial markets in emerging economies: The significant role of Kazakhstan as the oil exporting country," Finance Research Letters, Elsevier, vol. 32(C).
  365. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
  366. Debbie J. Dupuis & Nicolas Papageorgiou & Bruno Rémillard, 2015. "Robust Conditional Variance and Value-at-Risk Estimation," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 896-921.
  367. Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
  368. Hetland, Simon & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2023. "Dynamic conditional eigenvalue GARCH," Journal of Econometrics, Elsevier, vol. 237(2).
  369. Andrew J. Patton & Yasin Simsek, 2023. "Generalized Autoregressive Score Trees and Forests," Papers 2305.18991, arXiv.org.
  370. Alex Karagrigoriou & George-Jason Siouris & Despoina Skilogianni, 2019. "Adjusted Evaluation Measures for Asymmetrically Important Data," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(1), pages 41-66, June.
  371. Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).
  372. Felipe de Oliveira & Sinézio Fernandes Maia & Diego Pita de Jesus, 2017. "Which information matters to Market risk spreading in Brazil? Volatility transmission modeling using MGARH-BEKK, DCC, t-COPULAS," EcoMod2017 10378, EcoMod.
  373. Palumbo, D., 2021. "Testing and Modelling Time Series with Time Varying Tails," Cambridge Working Papers in Economics 2111, Faculty of Economics, University of Cambridge.
  374. Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
  375. Federico Gatta & Fabrizio Lillo & Piero Mazzarisi, 2024. "CAESar: Conditional Autoregressive Expected Shortfall," Papers 2407.06619, arXiv.org.
  376. Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
  377. Barbara Rossi & Atsushi Inoue & Yiru Wang, 2024. "Has the Phillips curve flattened?," French Stata Users' Group Meetings 2024 22, Stata Users Group.
  378. Yingying Xu & Donald Lien, 2022. "Forecasting volatilities of oil and gas assets: A comparison of GAS, GARCH, and EGARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 259-278, March.
  379. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
  380. Ivanovski, Kris & Hailemariam, Abebe, 2023. "Forecasting the stock-cryptocurrency relationship: Evidence from a dynamic GAS model," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 97-111.
  381. Herrera, Rodrigo & Piña, Marco, 2024. "Market risk modeling with option-implied covariances and score-driven dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
  382. Bu, Di & Liao, Yin & Shi, Jing & Peng, Hongfeng, 2019. "Dynamic expected shortfall: A spectral decomposition of tail risk across time horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
  383. Fuentes, Fernanda & Herrera, Rodrigo & Clements, Adam, 2023. "Forecasting extreme financial risk: A score-driven approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 720-735.
  384. Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonality Detection in Small Samples using Score-Driven Nonlinear Multivariate Dynamic Location Models," UC3M Working papers. Economics 27483, Universidad Carlos III de Madrid. Departamento de Economía.
  385. Boako, Gideon & Alagidede, Paul, 2017. "Currency price risk and stock market returns in Africa: Dependence and downside spillover effects with stochastic copulas," Journal of Multinational Financial Management, Elsevier, vol. 41(C), pages 92-114.
  386. Koopman, Siem Jan & Lit, Rutger, 2019. "Forecasting football match results in national league competitions using score-driven time series models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 797-809.
  387. Owusu Junior, Peterson & Alagidede, Imhotep, 2020. "Risks in emerging markets equities: Time-varying versus spatial risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
  388. Francisco Blasques & Andre Lucas & Erkki Silde, 2013. "Stationarity and Ergodicity Regions for Score Driven Dynamic Correlation Models," Tinbergen Institute Discussion Papers 13-097/IV/DSF59, Tinbergen Institute.
  389. Harvey, A. & Palumbo, D., 2021. "Regime switching models for directional and linear observations," Cambridge Working Papers in Economics 2123, Faculty of Economics, University of Cambridge.
  390. Ouyang, Ruolan & Zhang, Xuan, 2020. "Financialization of agricultural commodities: Evidence from China," Economic Modelling, Elsevier, vol. 85(C), pages 381-389.
  391. Francisco Blasques & Noah Stegehuis, 2024. "A Score-Driven Filter for Causal Regression Models with Time- Varying Parameters and Endogenous Regressors," Tinbergen Institute Discussion Papers 24-016/III, Tinbergen Institute.
  392. Bai, Xiwen & Lam, Jasmine Siu Lee, 2019. "A copula-GARCH approach for analyzing dynamic conditional dependency structure between liquefied petroleum gas freight rate, product price arbitrage and crude oil price," Energy Economics, Elsevier, vol. 78(C), pages 412-427.
  393. Guizhou Liu & Shigeyuki Hamori, 2020. "Can One Reinforce Investments in Renewable Energy Stock Indices with the ESG Index?," Energies, MDPI, vol. 13(5), pages 1-19, March.
  394. Giuseppe Storti & Chao Wang, 2022. "A semi-parametric marginalized dynamic conditional correlation framework," Papers 2207.04595, arXiv.org, revised Jul 2024.
  395. Pelster, Matthias & Vilsmeier, Johannes, 2016. "The determinants of CDS spreads: Evidence from the model space," Discussion Papers 43/2016, Deutsche Bundesbank.
  396. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
  397. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
  398. Heil, Thomas L.A. & Peter, Franziska J. & Prange, Philipp, 2022. "Measuring 25 years of global equity market co-movement using a time-varying spatial model," Journal of International Money and Finance, Elsevier, vol. 128(C).
  399. F. Campigli & G. Bormetti & F. Lillo, 2022. "Measuring price impact and information content of trades in a time-varying setting," Papers 2212.12687, arXiv.org, revised Dec 2023.
  400. Xu, Yingying & Lien, Donald, 2020. "Dynamic exchange rate dependences: The effect of the U.S.-China trade war," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 68(C).
  401. Xing, Xiaoyun & Xu, Zihan & Chen, Ying & Ouyang, WenPei & Deng, Jing & Pan, Huanxue, 2023. "The impact of the Russia–Ukraine conflict on the energy subsector stocks in China: A network-based approach," Finance Research Letters, Elsevier, vol. 53(C).
  402. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.
  403. Paul Labonne, 2020. "Asymmetric uncertainty : Nowcasting using skewness in real-time data," Papers 2012.02601, arXiv.org, revised May 2024.
  404. Leopoldo Catania & Stefano Grassi & Francesco Ravazzolo, 2018. "Predicting the Volatility of Cryptocurrency Time Series," Working Papers No 3/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  405. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Optimal Formulations for Nonlinear Autoregressive Processes," Tinbergen Institute Discussion Papers 14-103/III, Tinbergen Institute.
  406. Ahmed M. Khedr & Ifra Arif & Pravija Raj P V & Magdi El‐Bannany & Saadat M. Alhashmi & Meenu Sreedharan, 2021. "Cryptocurrency price prediction using traditional statistical and machine‐learning techniques: A survey," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 28(1), pages 3-34, January.
  407. Andre Lucas & Bernd Schwaab & Xin Zhang, 2013. "Measuring Credit Risk in a Large Banking System: Econometric Modeling and Empirics," Tinbergen Institute Discussion Papers 13-063/IV/DSF56, Tinbergen Institute, revised 13 Oct 2014.
  408. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
  409. Mohammed A. Bou-Rabee & Muhammad Yasin Naz & Imad ED. Albalaa & Shaharin Anwar Sulaiman, 2022. "BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones," Energies, MDPI, vol. 15(6), pages 1-12, March.
  410. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
  411. Guglielmo Maria Caporale & Menelaos Karanasos & Stavroula Yfanti, 2019. "Macro-Financial Linkages in the High-Frequency Domain: The Effects of Uncertainty on Realized Volatility," CESifo Working Paper Series 8000, CESifo.
  412. Krupskii, Pavel & Joe, Harry, 2020. "Flexible copula models with dynamic dependence and application to financial data," Econometrics and Statistics, Elsevier, vol. 16(C), pages 148-167.
  413. Yicong Lin & Mingxuan Song, 2023. "Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence," Tinbergen Institute Discussion Papers 23-049/III, Tinbergen Institute.
  414. Yingying Xu & Donald Lien, 2020. "Optimal futures hedging for energy commodities: An application of the GAS model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1090-1108, July.
  415. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
  416. Marco Bee & Luca Trapin, 2018. "Estimating and Forecasting Conditional Risk Measures with Extreme Value Theory: A Review," Risks, MDPI, vol. 6(2), pages 1-16, April.
  417. Rutger-Jan Lange & Andre Lucas & Arjen H. Siegmann, 2016. "Score-Driven Systemic Risk Signaling for European Sovereign Bond Yields and CDS Spreads," Tinbergen Institute Discussion Papers 16-064/IV, Tinbergen Institute.
  418. Ivanovski, Kris & Hailemariam, Abebe, 2021. "Forecasting the dynamic relationship between crude oil and stock prices since the 19th century," Journal of Commodity Markets, Elsevier, vol. 24(C).
  419. Giuseppe Storti & Chao Wang, 2023. "Modeling uncertainty in financial tail risk: A forecast combination and weighted quantile approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1648-1663, November.
  420. Semeyutin, Artur & O’Neill, Robert, 2019. "A brief survey on the choice of parameters for: “Kernel density estimation for time series data”," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.