Estimation of value at risk for copper
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jcomm.2023.100351
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Marco Lombardi & Chiara Osbat & Bernd Schnatz, 2012.
"Global commodity cycles and linkages: a FAVAR approach,"
Empirical Economics, Springer, vol. 43(2), pages 651-670, October.
- Lombardi, Marco J. & Osbat, Chiara & Schnatz, Bernd, 2010. "Global commodity cycles and linkages a FAVAR approach," Working Paper Series 1170, European Central Bank.
- repec:dau:papers:123456789/14980 is not listed on IDEAS
- Degiannakis, Stavros & Potamia, Artemis, 2017.
"Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data,"
International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
- Degiannakis, Stavros & Potamia, Artemis, 2016. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: inter-day versus intra-day data," MPRA Paper 74670, University Library of Munich, Germany.
- Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
- Quynh Nga Nguyen & Sofiane Aboura & Julien Chevallier & Lyuyuan Zhang & Bangzhu Zhu, 2020. "Local Gaussian correlations in financial and commodity markets," Post-Print halshs-04250247, HAL.
- Zaremba, Adam & Umar, Zaghum & Mikutowski, Mateusz, 2021. "Commodity financialisation and price co-movement: Lessons from two centuries of evidence," Finance Research Letters, Elsevier, vol. 38(C).
- Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2018.
"Economic significance of commodity return forecasts from the fractionally cointegrated VAR model,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 219-242, February.
- Sepideh Dolatabadi & Paresh Kumar Narayan & Morten Ørregaard Nielsen & Ke Xu, 2017. "Economic significance of commodity return forecasts from the fractionally cointegrated VAR model," CREATES Research Papers 2018-35, Department of Economics and Business Economics, Aarhus University.
- Sepideh Dolatabadi & Ke Xu & Morten Ø. Nielsen & Paresh Kumar Narayan, 2017. "Economic Significance Of Commodity Return Forecasts From The Fractionally Cointegrated Var Model," Working Paper 1337, Economics Department, Queen's University.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Mongi Arfaoui & Aymen Ben Rejeb, 2017.
"Oil, gold, US dollar and stock market interdependencies: a global analytical insight,"
European Journal of Management and Business Economics, Emerald Group Publishing Limited, vol. 26(3), pages 278-293, October.
- Arfaoui, Mongi & Ben Rejeb, Aymen, 2016. "Oil, Gold, US dollar and Stock market interdependencies: A global analytical insight," MPRA Paper 70452, University Library of Munich, Germany.
- Lucas, André & Zhang, Xin, 2016.
"Score-driven exponentially weighted moving averages and Value-at-Risk forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
- André Lucas & Xin Zhang, 2014. "Score Driven exponentially Weighted Moving Average and Value-at-Risk Forecasting," Tinbergen Institute Discussion Papers 14-092/IV/DSF77, Tinbergen Institute, revised 09 Sep 2015.
- Lucas, André & Zhang, Xin, 2015. "Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting," Working Paper Series 309, Sveriges Riksbank (Central Bank of Sweden).
- Zhu, Huiming & Meng, Liang & Ge, Yajing & Hau, Liya, 2020. "Dependent relationships between Chinese commodity markets and the international financial market: Evidence from quantile time-frequency analysis," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Hung, Jui-Cheng & Lee, Ming-Chih & Liu, Hung-Chun, 2008. "Estimation of value-at-risk for energy commodities via fat-tailed GARCH models," Energy Economics, Elsevier, vol. 30(3), pages 1173-1191, May.
- Jin, Jiayu & Han, Liyan & Xu, Yang, 2022. "Does the SDR stabilize investing in commodities?," International Review of Economics & Finance, Elsevier, vol. 81(C), pages 160-172.
- Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
- Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
- Tim Krehbiel & Lee C. Adkins, 2005. "Price risk in the NYMEX energy complex: An extreme value approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 309-337, April.
- David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Value-at-Risk Prediction in R with the GAS Package," Papers 1611.06010, arXiv.org.
- Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
- Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
- Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Angela J. Black & Olga Klinkowska & David G. McMillan & Fiona J. McMillan, 2014. "Forecasting Stock Returns: Do Commodity Prices Help?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 627-639, December.
- Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2021. "Commodity futures returns and policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 364-383.
- Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014.
"Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory,"
Energy Economics, Elsevier, vol. 41(C), pages 1-18.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-325, Department of Research, Ipag Business School.
- Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-389, Department of Research, Ipag Business School.
- Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
- Matthew Harding & Carlos Lamarche & M. Hashem Pesaran, 2020.
"Common correlated effects estimation of heterogeneous dynamic panel quantile regression models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 294-314, April.
- Matthew Harding & Carlos Lamarche & M. Hashem Pesaran, 2018. "Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Quantile Regression Models," CESifo Working Paper Series 7211, CESifo.
- Pierre Giot, 2003.
"The information content of implied volatility in agricultural commodity markets,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(5), pages 441-454, May.
- GIOT, Pierre, 2002. "The information content of implied volatility in agricultural commodity markets," LIDAM Discussion Papers CORE 2002038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre, 2003. "The information content of implied volatility in agricultural commodity markets," LIDAM Reprints CORE 1612, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
- Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
- Liu, Li & Tan, Siming & Wang, Yudong, 2020. "Can commodity prices forecast exchange rates?," Energy Economics, Elsevier, vol. 87(C).
- Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.
- Huang, Dashan & Yu, Baimin & Fabozzi, Frank J. & Fukushima, Masao, 2009. "CAViaR-based forecast for oil price risk," Energy Economics, Elsevier, vol. 31(4), pages 511-518, July.
- Nguyen, Quynh Nga & Aboura, Sofiane & Chevallier, Julien & Zhang, Lyuyuan & Zhu, Bangzhu, 2020. "Local Gaussian correlations in financial and commodity markets," European Journal of Operational Research, Elsevier, vol. 285(1), pages 306-323.
- Roland Füss & Zeno Adams & Dieter G Kaiser, 2010. "The predictive power of value-at-risk models in commodity futures markets," Journal of Asset Management, Palgrave Macmillan, vol. 11(4), pages 261-285, October.
- Olson, Eric & J. Vivian, Andrew & Wohar, Mark E., 2014. "The relationship between energy and equity markets: Evidence from volatility impulse response functions," Energy Economics, Elsevier, vol. 43(C), pages 297-305.
- Iyke, Bernard Njindan & Ho, Sin-Yu, 2021. "Stock return predictability over four centuries: The role of commodity returns," Finance Research Letters, Elsevier, vol. 40(C).
- Peng, Wei, 2021. "The transmission of default risk between banks and countries based on CAViaR models," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 500-509.
- Giot, Pierre & Laurent, Sebastien, 2003.
"Market risk in commodity markets: a VaR approach,"
Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Reprints CORE 1682, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Market risk in commodity markets: a VaR approach," LIDAM Discussion Papers CORE 2003028, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Labys, Walter C. & Maizels, Alfred, 1993. "Commodity price fluctuations and macroeconomic adjustments in the developed economies," Journal of Policy Modeling, Elsevier, vol. 15(3), pages 335-352, June.
- Pownall, Rachel A. J. & Koedijk, Kees G., 1999. "Capturing downside risk in financial markets: the case of the Asian Crisis," Journal of International Money and Finance, Elsevier, vol. 18(6), pages 853-870, December.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
- Lin, Fu-Lai & Chen, Yu-Fen & Yang, Sheng-Yung, 2016. "Does the value of US dollar matter with the price of oil and gold? A dynamic analysis from time–frequency space," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 59-71.
- Alizadeh, Amir H. & Nomikos, Nikos K. & Pouliasis, Panos K., 2008. "A Markov regime switching approach for hedging energy commodities," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1970-1983, September.
- Ordu-Akkaya, Beyza Mina & Soytas, Ugur, 2020. "Unconventional monetary policy and financialization of commodities," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Apergis, Nicholas & Chatziantoniou, Ioannis & Cooray, Arusha, 2020. "Monetary policy and commodity markets: Unconventional versus conventional impact and the role of economic uncertainty," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Antonio Spilimbergo, 2002.
"Copper and the Chilean Economy, 1960-98,"
Journal of Economic Policy Reform, Taylor & Francis Journals, vol. 5(2), pages 115-126.
- Mr. Antonio Spilimbergo, 1999. "Copper and the Chilean Economy, 1960–98," IMF Working Papers 1999/057, International Monetary Fund.
- Wei Xiong & Maozai Tian, 2014. "A new model selection procedure based on dynamic quantile regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(10), pages 2240-2256, October.
- Mauro Bernardi & Leopoldo Catania, 2019. "Switching generalized autoregressive score copula models with application to systemic risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 43-65, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Westgaard, Sjur & Fleten, Stein-Erik & Negash, Ahlmahz & Botterud, Audun & Bogaard, Katinka & Verling, Trude Haugsvaer, 2021. "Performing price scenario analysis and stress testing using quantile regression: A case study of the Californian electricity market," Energy, Elsevier, vol. 214(C).
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Youssef, Manel & Belkacem, Lotfi & Mokni, Khaled, 2015. "Value-at-Risk estimation of energy commodities: A long-memory GARCH–EVT approach," Energy Economics, Elsevier, vol. 51(C), pages 99-110.
- Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
- Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
- Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
- Rehman, Mobeen Ur & Owusu Junior, Peterson & Ahmad, Nasir & Vo, Xuan Vinh, 2022. "Time-varying risk analysis for commodity futures," Resources Policy, Elsevier, vol. 78(C).
- Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
- František Čech & Jozef Baruník, 2019.
"Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(9), pages 1167-1189, September.
- Frantiv{s}ek v{C}ech & Jozef Barun'ik, 2018. "Panel quantile regressions for estimating and predicting the Value--at--Risk of commodities," Papers 1807.11823, arXiv.org.
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Wei, Yu & Kong, Mengzhen, 2024. "Does mixed frequency variables help to forecast value at risk in the crude oil market?," Resources Policy, Elsevier, vol. 88(C).
- Ghorbel, Ahmed & Trabelsi, Abdelwahed, 2014. "Energy portfolio risk management using time-varying extreme value copula methods," Economic Modelling, Elsevier, vol. 38(C), pages 470-485.
- Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
- Lu Yang & Shigeyuki Hamori, 2020. "Forecasts of Value-at-Risk and Expected Shortfall in the Crude Oil Market: A Wavelet-Based Semiparametric Approach," Energies, MDPI, vol. 13(14), pages 1-27, July.
- Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
- He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
- Morelli, Giacomo, 2023. "Stochastic ordering of systemic risk in commodity markets," Energy Economics, Elsevier, vol. 117(C).
- Liu, Wei & Semeyutin, Artur & Lau, Chi Keung Marco & Gozgor, Giray, 2020. "Forecasting Value-at-Risk of Cryptocurrencies with RiskMetrics type models," Research in International Business and Finance, Elsevier, vol. 54(C).
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Yang, Mo & Chang, Jianing, 2024. "Forecasting the VaR of the crude oil market: A combination of mixed data sampling and extreme value theory," Energy Economics, Elsevier, vol. 133(C).
More about this item
Keywords
Commodities market; Copper; VaR forecasts; GARCH-Type models; CAViaR; DQR; JEL; Classification: C46; C58; G15; F31;All these keywords.
JEL classification:
- C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- F31 - International Economics - - International Finance - - - Foreign Exchange
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:32:y:2023:i:c:s2405851323000417. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.