IDEAS home Printed from https://ideas.repec.org/a/rbs/ijfbss/v10y2021i4p40-54.html
   My bibliography  Save this article

Value at Risk estimation using GAS models with heavy tailed distributions for cryptocurrencies

Author

Listed:
  • Stephanie Danielle Subramoney

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa)

  • Knowledge Chinhamu

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa)

  • Retius Chifurira

    (School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa)

Abstract

Risk management and prediction of market losses of cryptocurrencies are of notable value to risk managers, portfolio managers, financial market researchers and academics. One of the most common measures of an asset’s risk is Value-at-Risk (VaR). This paper evaluates and compares the performance of generalized autoregressive score (GAS) combined with heavy-tailed distributions, in estimating the VaR of two well-known cryptocurrencies’ returns, namely Bitcoin returns and Ethereum returns. In this paper, we proposed a VaR model for Bitcoin and Ethereum returns, namely the GAS model combined with the generalized lambda distribution (GLD), referred to as the GAS-GLD model. The relative performance of the GAS-GLD models was compared to the models proposed by Troster et al. (2018), in other words, GAS models combined with asymmetric Laplace distribution (ALD), the asymmetric Student’s t-distribution (AST) and the skew Student’s t-distribution (SSTD). The Kupiec likelihood ratio test was used to assess the adequacy of the proposed models. The principal findings suggest that the GAS models with heavy-tailed innovation distributions are, in fact, appropriate for modelling cryptocurrency returns, with the GAS-GLD being the most adequate for the Bitcoin returns at various VaR levels, and both GAS-SSTD, GAS-ALD and GAS-GLD models being the most appropriate for the Ethereum returns at the VaR levels used in this study.

Suggested Citation

  • Stephanie Danielle Subramoney & Knowledge Chinhamu & Retius Chifurira, 2021. "Value at Risk estimation using GAS models with heavy tailed distributions for cryptocurrencies," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 40-54, October.
  • Handle: RePEc:rbs:ijfbss:v:10:y:2021:i:4:p:40-54
    as

    Download full text from publisher

    File URL: https://www.ssbfnet.com/ojs/index.php/ijfbs/article/view/1316/1030
    Download Restriction: no

    File URL: https://www.ssbfnet.com/ojs/index.php/ijfbs/article/view/1316
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016. "What drives Bitcoin price?," Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
    2. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    3. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    4. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    5. Leopoldo Catania & Stefano Grassi, 2017. "Modelling Crypto-Currencies Financial Time-Series," CEIS Research Paper 417, Tor Vergata University, CEIS, revised 11 Dec 2017.
    6. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    7. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    8. Charles J. Corrado, 2001. "Option pricing based on the generalized lambda distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 213-236, March.
    9. Takaishi, Tetsuya, 2018. "Statistical properties and multifractality of Bitcoin," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 507-519.
    10. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    2. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    3. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    4. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    5. Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
    6. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2019. "A Peek into the Unobservable: Hidden States and Bayesian Inference for the Bitcoin and Ether Price Series," Papers 1909.10957, arXiv.org, revised Jul 2021.
    7. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    8. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    9. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    10. Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
    11. Canh, Nguyen Phuc & Wongchoti, Udomsak & Thanh, Su Dinh & Thong, Nguyen Trung, 2019. "Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model," Finance Research Letters, Elsevier, vol. 29(C), pages 90-100.
    12. Park, Sangjin & Jang, Kwahngsoo & Yang, Jae-Suk, 2021. "Information flow between bitcoin and other financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    13. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    14. Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
    15. da Cunha, C.R. & da Silva, R., 2020. "Relevant stylized facts about bitcoin: Fluctuations, first return probability, and natural phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    16. Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
    17. Garcia-Jorcano, Laura & Benito, Sonia, 2020. "Studying the properties of the Bitcoin as a diversifying and hedging asset through a copula analysis: Constant and time-varying," Research in International Business and Finance, Elsevier, vol. 54(C).
    18. T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
    19. Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
    20. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rbs:ijfbss:v:10:y:2021:i:4:p:40-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hasan Dincer (email available below). General contact details of provider: https://edirc.repec.org/data/ssbffea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.