Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Charles, Amélie & Darné, Olivier, 2019.
"Volatility estimation for Bitcoin: Replication and robustness,"
International Economics, Elsevier, vol. 157(C), pages 23-32.
- Amélie Charles & Olivier Darné, 2019. "Volatility estimation for Bitcoin: Replication and robustness," International Economics, CEPII research center, issue 157, pages 23-32.
- Olivier Darné & Amélie Charles, 2019. "Volatility estimation for Bitcoin: Replication and robustness," Post-Print hal-01941102, HAL.
- Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Almeida e Santos Nogueira, R.J. & Basturk, N. & Kaymak, U. & Costa Sousa, J.M., 2013. "Estimation of flexible fuzzy GARCH models for conditional density estimation," ERIM Report Series Research in Management ERS-2013-013-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002.
"Bayesian Analysis of Stochastic Volatility Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
- Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017.
"Some stylized facts of the Bitcoin market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
- Aurelio F. Bariviera & Mar'ia Jos'e Basgall & Waldo Hasperu'e & Marcelo Naiouf, 2017. "Some stylized facts of the Bitcoin market," Papers 1708.04532, arXiv.org.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Stavros Stavroyiannis, 2018. "Value-at-risk and related measures for the Bitcoin," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(2), pages 127-136, March.
- Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017.
"Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions,"
Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
- Elie Bouri & Rangan Gupta & Aviral Kumar Tiwari & David Roubaud, 2016. "Does Bitcoin Hedge Global Uncertainty? Evidence from Wavelet-Based Quantile-in-Quantile Regressions," Working Papers 201690, University of Pretoria, Department of Economics.
- Elie Bouri & Rangan Gupta & Aviral Kumar Tiwari & David Roubaud, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Post-Print hal-02008552, HAL.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Meitz, Mika & Saikkonen, Pentti, 2011.
"Parameter Estimation In Nonlinear Ar–Garch Models,"
Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter Estimation in Nonlinear AR-GARCH Models," Economics Working Papers ECO2008/25, European University Institute.
- Mika Meitz & Pentti Saikkonen, 2010. "Parameter estimation in nonlinear AR–GARCH models," Koç University-TUSIAD Economic Research Forum Working Papers 1002, Koc University-TUSIAD Economic Research Forum.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," Economics Series Working Papers 396, University of Oxford, Department of Economics.
- Mika Meitz & Pentti Saikkonen, 2008. "Parameter estimation in nonlinear AR-GARCH models," CREATES Research Papers 2008-30, Department of Economics and Business Economics, Aarhus University.
- Alessandra Amendola & Giuseppe Storti, 2002.
"A non-linear time series approach to modelling asymmetry in stock market indexes,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(2), pages 201-216, June.
- Giuseppe Storti & Alessandra Amendola, 2000. "A Non Linear Time Series Approach To Modelling Asymmetry In Stock Market Indexes," Computing in Economics and Finance 2000 97, Society for Computational Economics.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
- Harvey, Andrew & Sucarrat, Genaro, 2014.
"EGARCH models with fat tails, skewness and leverage,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
- Harvey, A. & Sucarrat, G., 2012. "EGARCH models with fat tails, skewness and leverage," Cambridge Working Papers in Economics 1236, Faculty of Economics, University of Cambridge.
- C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
- Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
- Massimiliano Giacalone & Demetrio Panarello & Raffaele Mattera, 2018. "Multicollinearity in regression: an efficiency comparison between Lp-norm and least squares estimators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1831-1859, July.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
- Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.
- Ortobelli, Sergio & Rachev, Svetlozar T. & Fabozzi, Frank J., 2010. "Risk management and dynamic portfolio selection with stable Paretian distributions," Journal of Empirical Finance, Elsevier, vol. 17(2), pages 195-211, March.
- Ruiping Liu & Zhichao Shao & Guodong Wei & Wei Wang, 2017. "GARCH Model With Fat-Tailed Distributions and Bitcoin Exchange Rate Returns," Journal of Accounting, Business and Finance Research, Scientific Publishing Institute, vol. 1(1), pages 71-75.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrew Spurr & Marcel Ausloos, 2021.
"Challenging practical features of Bitcoin by the main altcoins,"
Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1541-1559, October.
- Andrew Spurr & Marcel Ausloos, 2020. "Challenging Practical Features of Bitcoin by the Main Altcoins," Papers 2101.03891, arXiv.org.
- Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
- Deniz Erer, 2023. "The Impact of News Related Covid-19 on Exchange Rate Volatility:A New Evidence From Generalized Autoregressive Score Model," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(38), pages 105-126, June.
- José Antonio Núñez-Mora & Roberto Joaquín Santillán-Salgado & Mario Iván Contreras-Valdez, 2022. "COVID Asymmetric Impact on the Risk Premium of Developed and Emerging Countries’ Stock Markets," Mathematics, MDPI, vol. 10(9), pages 1-36, April.
- Tetsuo Kurosaki & Young Shin Kim, 2020. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Papers 2010.08900, arXiv.org.
- James, Nick & Menzies, Max & Gottwald, Georg A., 2022. "On financial market correlation structures and diversification benefits across and within equity sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
- Nick James & Max Menzies, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Papers 2307.15402, arXiv.org, revised Sep 2023.
- Kurosaki, Tetsuo & Kim, Young Shin, 2022. "Cryptocurrency portfolio optimization with multivariate normal tempered stable processes and Foster-Hart risk," Finance Research Letters, Elsevier, vol. 45(C).
- Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
- Massimiliano Giacalone, 2022. "Optimal forecasting accuracy using Lp-norm combination," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 187-230, August.
- Amiri , Hossein & Najafi Nejad , Mahmood & Mousavi , Seyede Mohadese, 2021. "Estimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 16(2), pages 165-186, June.
- Theophilos Papadimitriou & Periklis Gogas & Athanasios Fotios Athanasiou, 2022. "Forecasting Bitcoin Spikes: A GARCH-SVM Approach," Forecasting, MDPI, vol. 4(4), pages 1-15, September.
- Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
- Wu, Xinyu & Yin, Xuebao & Umar, Zaghum & Iqbal, Najaf, 2023. "Volatility forecasting in the Bitcoin market: A new proposed measure based on the VS-ACARR approach," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
- Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
- Massimiliano Giacalone & Demetrio Panarello, 2022. "A Nonparametric Approach for Testing Long Memory in Stock Returns’ Higher Moments," Mathematics, MDPI, vol. 10(5), pages 1-21, February.
- Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
- James, Nick & Menzies, Max, 2023. "An exploration of the mathematical structure and behavioural biases of 21st century financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
- Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.
- Esparcia, Carlos & Escribano, Ana & Jareño, Francisco, 2023. "Did cryptomarket chaos unleash Silvergate's bankruptcy? investigating the high-frequency volatility and connectedness behind the collapse," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
- Giulio Mattera & Gianfranco Piscopo & Maria Longobardi & Massimiliano Giacalone & Luigi Nele, 2024. "Improving the Interpretability of Data-Driven Models for Additive Manufacturing Processes Using Clusterwise Regression," Mathematics, MDPI, vol. 12(16), pages 1-18, August.
- Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
- Manavi, Seyed Alireza & Jafari, Gholamreza & Rouhani, Shahin & Ausloos, Marcel, 2020. "Demythifying the belief in cryptocurrencies decentralized aspects. A study of cryptocurrencies time cross-correlations with common currencies, commodities and financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
- Owusu Junior, Peterson & Tiwari, Aviral Kumar & Tweneboah, George & Asafo-Adjei, Emmanuel, 2022. "GAS and GARCH based value-at-risk modeling of precious metals," Resources Policy, Elsevier, vol. 75(C).
- Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
- Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
- Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022.
"On the volatility of cryptocurrencies,"
Research in International Business and Finance, Elsevier, vol. 62(C).
- Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "On the volatility of cryptocurrencies," Working Papers 2202, University of Guelph, Department of Economics and Finance.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
- Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
- Milton Abdul Thorlie & Lixin Song & Muhammad Amin & Xiaoguang Wang, 2015. "Modeling and forecasting of stock index volatility with APARCH models under ordered restriction," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 329-356, August.
- Catania, Leopoldo & Proietti, Tommaso, 2020.
"Forecasting volatility with time-varying leverage and volatility of volatility effects,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
- Leopoldo Catania & Tommaso Proietti, 2019. "Forecasting Volatility with Time-Varying Leverage and Volatility of Volatility Effects," CEIS Research Paper 450, Tor Vergata University, CEIS, revised 06 Feb 2019.
- Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018.
"Volatility forecasting across tanker freight rates: The role of oil price shocks,"
Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
- Konstantinos Gavriilidis & Dimos S. Kambouroudis & Katerina Tsakou & Dimitris S. Tsouknidis, 2018. "Volatility forecasting across tanker freight rates: the role of oil price shocks," Working Papers 2018-27, Swansea University, School of Management.
- Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018.
"Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance,"
International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
- Klein, Tony & Thu, Hien Pham & Walther, Thomas, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," IRTG 1792 Discussion Papers 2018-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Klein, Tony & Hien, Pham Thu & Walther, Thomas, 2018. "Bitcoin Is Not the New Gold: A Comparison of Volatility, Correlation, and Portfolio Performance," QBS Working Paper Series 2018/01, Queen's University Belfast, Queen's Business School.
- Thomas Walther & Tony Klein & Hien Pham Thu, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," Working Papers on Finance 1812, University of St. Gallen, School of Finance.
- Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
- Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019.
"Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model,"
Working Papers
07-19, Association Française de Cliométrie (AFC).
- Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers of BETA 2019-24, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
- Tae-Hwy Lee & Yong Bao & Burak Saltoğlu, 2007. "Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003;," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 203-225.
- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(4), pages 445-463, October.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2020-05-11 (Econometric Time Series)
- NEP-GEN-2020-05-11 (Gender)
- NEP-PAY-2020-05-11 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.11674. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.