IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/1530.html
   My bibliography  Save this paper

The Taming of the Skew : Asymmetric Inflation Risk and Monetary Policy

Author

Listed:
  • De Polis, Andrea

    (University of Strathclyde & ESCOE)

  • Melosi, Leonardo

    (University of Warwick, European University Institute, DNB & CEPR)

  • Petrella, Ivan

    (Collegio Carlo Alberto, University of Turin & CEPR)

Abstract

We document that inflation risk in the U.S. varies significantly over time and is often asymmetric. To analyze the first-order macroeconomic effects of these asymmetric risks within a tractable framework, we construct the beliefs representation of a general equilibrium model with skewed distribution of markup shocks. Optimal policy requires shifting agents’ expectations counter to the direction of inflation risks. We perform counterfactual analyses using a quantitative general equilibrium model to evaluate the implications of incorporating real-time estimates of the balance of inflation risks into monetary policy communications and decisions.

Suggested Citation

  • De Polis, Andrea & Melosi, Leonardo & Petrella, Ivan, 2024. "The Taming of the Skew : Asymmetric Inflation Risk and Monetary Policy," The Warwick Economics Research Paper Series (TWERPS) 1530, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:1530
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2024/twerp_1530-_melosi.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Svensson, Lars E. O., 1997. "Inflation forecast targeting: Implementing and monitoring inflation targets," European Economic Review, Elsevier, vol. 41(6), pages 1111-1146, June.
    2. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    3. Lutz Kilian & Simone Manganelli, 2007. "Quantifying the Risk of Deflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 561-590, March.
    4. Mark Gertler & Nobuhiro Kiyotaki & Andrea Prestipino, 2020. "A Macroeconomic Model with Financial Panics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(1), pages 240-288.
    5. Bianchi, Francesco & Melosi, Leonardo & Rottner, Matthias, 2021. "Hitting the elusive inflation target," Journal of Monetary Economics, Elsevier, vol. 124(C), pages 107-122.
    6. Mark Gertler & Jordi Gali & Richard Clarida, 1999. "The Science of Monetary Policy: A New Keynesian Perspective," Journal of Economic Literature, American Economic Association, vol. 37(4), pages 1661-1707, December.
    7. Dolado Juan & Pedrero Ramón María-Dolores & Ruge-Murcia Francisco J., 2004. "Nonlinear Monetary Policy Rules: Some New Evidence for the U.S," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-34, September.
    8. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    9. Adams, Patrick A. & Adrian, Tobias & Boyarchenko, Nina & Giannone, Domenico, 2021. "Forecasting macroeconomic risks," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1173-1191.
    10. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    11. Guido Ascari & Argia M. Sbordone, 2014. "The Macroeconomics of Trend Inflation," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 679-739, September.
    12. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    13. Ben Bernanke & Olivier J Blanchard, 2023. "What caused the US pandemic-era inflation?," Working Paper Series WP23-4, Peterson Institute for International Economics.
    14. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    15. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    16. Chan, Joshua C.C., 2013. "Moving average stochastic volatility models with application to inflation forecast," Journal of Econometrics, Elsevier, vol. 176(2), pages 162-172.
    17. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    18. Surico, Paolo, 2007. "The Fed's monetary policy rule and U.S. inflation: The case of asymmetric preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 305-324, January.
    19. Korobilis, Dimitris & Landau, Bettina & Musso, Alberto & Phella, Anthoulla, 2021. "The time-varying evolution of inflation risks," Working Paper Series 2600, European Central Bank.
    20. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    21. Antolín-Díaz, Juan & Drechsel, Thomas & Petrella, Ivan, 2024. "Advances in nowcasting economic activity: The role of heterogeneous dynamics and fat tails," Journal of Econometrics, Elsevier, vol. 238(2).
    22. Manzan, Sebastiano & Zerom, Dawit, 2013. "Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?," International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
    23. Robert J. Gordon, 1970. "The Recent Acceleration of Inflation and Its Lessons for the Future," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 1(1), pages 8-47.
    24. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    25. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    26. Marc Giannoni & Michael Woodford, 2004. "Optimal Inflation-Targeting Rules," NBER Chapters, in: The Inflation-Targeting Debate, National Bureau of Economic Research, Inc.
    27. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfarrhofer, Michael, 2022. "Modeling tail risks of inflation using unobserved component quantile regressions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    2. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    3. Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
    4. Ignacio Garr'on & C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "International vulnerability of inflation," Papers 2410.20628, arXiv.org, revised Oct 2024.
    5. Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
    6. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    7. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    8. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
    9. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    10. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    11. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    12. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    13. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.
    14. Leopoldo Catania & Alessandra Luati & Pierluigi Vallarino, 2021. "Economic vulnerability is state dependent," CREATES Research Papers 2021-09, Department of Economics and Business Economics, Aarhus University.
    15. Pierluigi Vallarino, 2024. "Dynamic kernel models," Tinbergen Institute Discussion Papers 24-082/III, Tinbergen Institute.
    16. López-Salido, David & Loria, Francesca, 2024. "Inflation at risk," Journal of Monetary Economics, Elsevier, vol. 145(S).
    17. Huber, Florian & Onorante, Luca & Pfarrhofer, Michael, 2024. "Forecasting euro area inflation using a huge panel of survey expectations," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1042-1054.
    18. Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
    19. Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
    20. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).

    More about this item

    Keywords

    Asymmetric risks ; optimal monetary policy ; balance of inflation risks ; risk-adjusted inflation targeting ; flexible average inflation targeting JEL Codes: E52 ; E31 ; C53;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:1530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Margaret Nash (email available below). General contact details of provider: https://edirc.repec.org/data/dewaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.