IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1179-d328478.html
   My bibliography  Save this article

Can One Reinforce Investments in Renewable Energy Stock Indices with the ESG Index?

Author

Listed:
  • Guizhou Liu

    (Graduate School of Economics, Kobe University, 2-1, Rokkodai, Nada-Ku, Kobe 657-8501, Japan)

  • Shigeyuki Hamori

    (Graduate School of Economics, Kobe University, 2-1, Rokkodai, Nada-Ku, Kobe 657-8501, Japan)

Abstract

Studies on the environmental, social, and governance (ESG) index have become increasingly important since the ESG index offers attractive characteristics, such as environmental friendliness. Scholars and institutional investors are evaluating if investment in the ESG index can positively change current portfolios. It is crucial that institutional investors seek related assets to diversify their investments when such investors create funds in the renewable energy sector, which is highly related to environmental issues. The ESG index has proven to be a good investment choice, but we are not aware of its performance when combined with renewable energy securities. To uncover this nature, we investigate the dependence structure of the ESG index and four renewable energy indices with constant and time-varying copula models and evaluate the potential performance of using different ratios of the ESG index in the portfolio. Criteria such as risk-adjusted return, standard deviation, and conditional value-at-risk (CVaR) show that the ESG index can provide satisfactory results in lowering the potential CVaR and maintaining a high return. A goodness-of-fit test is then used to ensure the results obtained from the copula models.

Suggested Citation

  • Guizhou Liu & Shigeyuki Hamori, 2020. "Can One Reinforce Investments in Renewable Energy Stock Indices with the ESG Index?," Energies, MDPI, vol. 13(5), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1179-:d:328478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sayema Sultana & Norhayah Zulkifli & Dalilawati Zainal, 2018. "Environmental, Social and Governance (ESG) and Investment Decision in Bangladesh," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    2. Lu Yang & Shigeyuki Hamori, 2013. "Dependence structure among international stock markets: a GARCH--copula analysis," Applied Financial Economics, Taylor & Francis Journals, vol. 23(23), pages 1805-1817, December.
    3. Keppler, Jan Horst & Mansanet-Bataller, Maria, 2010. "Causalities between CO2, electricity, and other energy variables during phase I and phase II of the EU ETS," Energy Policy, Elsevier, vol. 38(7), pages 3329-3341, July.
    4. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    5. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    6. Christopher Kaminker & Fiona Stewart, 2012. "The Role of Institutional Investors in Financing Clean Energy," OECD Working Papers on Finance, Insurance and Private Pensions 23, OECD Publishing.
    7. Yong Jae Shin & Unyong Pyo, 2019. "Liquidity hedging with futures and forward contracts," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 36(2), pages 265-290, June.
    8. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    9. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    10. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    11. repec:dau:papers:123456789/5269 is not listed on IDEAS
    12. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    13. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    14. Yang, Lu & Hamori, Shigeyuki, 2014. "Dependence structure between CEEC-3 and German government securities markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 29(C), pages 109-125.
    15. Lins, Karl V. & Servaes, Henri & Tufano, Peter, 2010. "What drives corporate liquidity? An international survey of cash holdings and lines of credit," Journal of Financial Economics, Elsevier, vol. 98(1), pages 160-176, October.
    16. Robert D. Klassen & Curtis P. McLaughlin, 1996. "The Impact of Environmental Management on Firm Performance," Management Science, INFORMS, vol. 42(8), pages 1199-1214, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elsayed, Ahmed H. & Khalfaoui, Rabeh & Nasreen, Samia & Gabauer, David, 2024. "The impact of oil shocks on green, clean, and socially responsible markets," Energy Economics, Elsevier, vol. 136(C).
    2. Dumiter Florin Cornel & Turcaș Florin Marius & Boiţă Marius, 2023. "Oil Shock Impact Upon Energy Companies Investment Portfolios. Trends and Evolutions in the Energy Consumption Sector," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 33(1), pages 1-27, March.
    3. Mantas Svazas & Yuriy Bilan & Valentinas Navickas & Małgorzata Okręglicka, 2023. "Energy Transformation in Municipal Areas—Key Datasets and Their Influence on Process Evaluation," Energies, MDPI, vol. 16(17), pages 1-20, August.
    4. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    5. Zhang, Wenting & He, Xie & Hamori, Shigeyuki, 2022. "Volatility spillover and investment strategies among sustainability-related financial indexes: Evidence from the DCC-GARCH-based dynamic connectedness and DCC-GARCH t-copula approach," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Ahmad, Wasim & Hernandez, Jose Arreola & Saini, Seema & Mishra, Ritesh Kumar, 2021. "The US equity sectors, implied volatilities, and COVID-19: What does the spillover analysis reveal?," Resources Policy, Elsevier, vol. 72(C).
    7. Jekaterina Kuzmina & Dzintra Atstaja & Maris Purvins & Guram Baakashvili & Vakhtang Chkareuli, 2023. "In Search of Sustainability and Financial Returns: The Case of ESG Energy Funds," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    8. Zoltán Csedő & József Magyari & Máté Zavarkó, 2022. "Dynamic Corporate Governance, Innovation, and Sustainability: Post-COVID Period," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    9. Lu, Xunfa & Huang, Nan & Mo, Jianlei & Ye, Zhitao, 2023. "Dynamics of the return and volatility connectedness among green finance markets during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 125(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Dependence structure in the Australian electricity markets: New evidence from regular vine copulae," Energy Economics, Elsevier, vol. 90(C).
    2. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
    3. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    4. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    5. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    6. Juan C. Reboredo & Andrea Ugolini & Yifei Chen, 2019. "Interdependence Between Renewable-Energy and Low-Carbon Stock Prices," Energies, MDPI, vol. 12(23), pages 1-14, November.
    7. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.
    8. Uddin, Gazi Salah & Rahman, Md Lutfur & Hedström, Axel & Ahmed, Ali, 2019. "Cross-quantilogram-based correlation and dependence between renewable energy stock and other asset classes," Energy Economics, Elsevier, vol. 80(C), pages 743-759.
    9. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    10. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    11. Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
    12. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    13. Karkowska, Renata & Urjasz, Szczepan, 2023. "How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    14. Storti, Giuseppe & Wang, Chao, 2022. "Nonparametric expected shortfall forecasting incorporating weighted quantiles," International Journal of Forecasting, Elsevier, vol. 38(1), pages 224-239.
    15. Souhir, Ben Amor & Heni, Boubaker & Lotfi, Belkacem, 2019. "Price risk and hedging strategies in Nord Pool electricity market evidence with sector indexes," Energy Economics, Elsevier, vol. 80(C), pages 635-655.
    16. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    17. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    18. Wen, Xiaoqian & Cheng, Hua, 2018. "Which is the safe haven for emerging stock markets, gold or the US dollar?," Emerging Markets Review, Elsevier, vol. 35(C), pages 69-90.
    19. Wen, Xiaoqian & Xie, Yuxin & Pantelous, Athanasios A., 2022. "Extreme price co-movement of commodity futures and industrial production growth: An empirical evaluation," Energy Economics, Elsevier, vol. 108(C).
    20. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1179-:d:328478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.