Beta–negative binomial auto‐regressions for modelling integer‐valued time series with extreme observations
Author
Abstract
Suggested Citation
DOI: 10.1111/rssb.12394
Download full text from publisher
References listed on IDEAS
- Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009.
"Poisson Autoregression,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
- Konstantinos Fokianos & Anders Rahbek & Dag Tjøstheim, 2008. "Poisson Autoregression," Discussion Papers 08-35, University of Copenhagen. Department of Economics, revised Dec 2008.
- Konstantinos Fokianos & Anders Rahbek & Dag Tjøstheim, 2009. "Poisson Autoregression," CREATES Research Papers 2009-12, Department of Economics and Business Economics, Aarhus University.
- Ali Ahmad & Christian Francq, 2016.
"Poisson QMLE of Count Time Series Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
- Ahmad, Ali & Francq, Christian, 2014. "Poisson qmle of count time series models," MPRA Paper 59804, University Library of Munich, Germany.
- Ali Ahmad & Christian Francq, 2015. "Poisson QMLE of Count Time Series Models," Post-Print hal-01533548, HAL.
- Fukang Zhu & Shuangzhe Liu & Lei Shi, 2016. "Local influence analysis for Poisson autoregression with an application to stock transaction data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(1), pages 4-25, February.
- Maria Eduarda Silva & Isabel Pereira & Brendan McCabe, 2019. "Bayesian Outlier Detection in Non‐Gaussian Autoregressive Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(5), pages 631-648, September.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
- Siem Jan Koopman & Rutger Lit & André Lucas, 2017.
"Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
- Siem Jan Koopman & Rutger Lit & Andre Lucas, 2015. "Intraday Stochastic Volatility in Discrete Price Changes: the Dynamic Skellam Model," Tinbergen Institute Discussion Papers 15-076/IV/DSF94, Tinbergen Institute.
- Andrew Harvey & Alessandra Luati, 2014.
"Filtering With Heavy Tails,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
- Harvey, A. & Luati, A., 2012. "Filtering with heavy tails," Cambridge Working Papers in Economics 1255, Faculty of Economics, University of Cambridge.
- Hall, A. & Scotto, M. G., 2003. "Extremes of sub-sampled integer-valued moving average models with heavy-tailed innovations," Statistics & Probability Letters, Elsevier, vol. 63(1), pages 97-105, May.
- Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
- Geweke, John & Amisano, Gianni, 2011.
"Optimal prediction pools,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
- John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
- Amisano, Gianni & Geweke, John, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
- Chao Wang & Heng Liu & Jian-Feng Yao & Richard A. Davis & Wai Keung Li, 2014. "Self-Excited Threshold Poisson Autoregression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 777-787, June.
- Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
- Mátyás Barczy & Márton Ispány & Gyula Pap & Manuel Scotto & Maria Silva, 2012. "Additive outliers in INAR(1) models," Statistical Papers, Springer, vol. 53(4), pages 935-949, November.
- Fukang Zhu, 2011. "A negative binomial integer‐valued GARCH model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 54-67, January.
- Paolo Gorgi, 2018. "Integer†Valued Autoregressive Models With Survival Probability Driven By A Stochastic Recurrence Equation," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 150-171, March.
- Manuel G. Scotto & Christian H. Weiß & Tobias A. Möller & Sónia Gouveia, 2018. "The max-INAR(1) model for count processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 850-870, December.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- de Rezende, Rafael & Egert, Katharina & Marin, Ignacio & Thompson, Guilherme, 2022. "A white-boxed ISSM approach to estimate uncertainty distributions of Walmart sales," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1460-1467.
- Huaping Chen & Qi Li & Fukang Zhu, 2023. "A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 805-826, October.
- Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.
- Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
- Eric A. Beutner & Yicong Lin & Andre Lucas, 2023. "Consistency, distributional convergence, and optimality of score-driven filters," Tinbergen Institute Discussion Papers 23-051/III, Tinbergen Institute.
- Bram van Os, 2023. "Information-Theoretic Time-Varying Density Modeling," Tinbergen Institute Discussion Papers 23-037/III, Tinbergen Institute.
- Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Giovanni Angelini & Giuseppe Cavaliere & Enzo D'Innocenzo & Luca De Angelis, 2022. "Time-Varying Poisson Autoregression," Papers 2207.11003, arXiv.org.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
- Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
- Mengya Liu & Qi Li & Fukang Zhu, 2020. "Self-excited hysteretic negative binomial autoregression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 385-415, September.
- Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
- Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
- Blasques, F. & Gorgi, P. & Koopman, S.J., 2019. "Accelerating score-driven time series models," Journal of Econometrics, Elsevier, vol. 212(2), pages 359-376.
- Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
- Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos & Touche, Nassim, 2019. "Integer-valued stochastic volatility," MPRA Paper 91962, University Library of Munich, Germany, revised 04 Feb 2019.
- Yan Cui & Fukang Zhu, 2018. "A new bivariate integer-valued GARCH model allowing for negative cross-correlation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 428-452, June.
- F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016.
"Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models,"
Papers
1610.02863, arXiv.org.
- Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2018. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Post-Print hal-01377971, HAL.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
- Cui, Yunwei & Zheng, Qi, 2017. "Conditional maximum likelihood estimation for a class of observation-driven time series models for count data," Statistics & Probability Letters, Elsevier, vol. 123(C), pages 193-201.
- Aknouche, Abdelhakim & Bendjeddou, Sara, 2016. "Negative binomial quasi-likelihood inference for general integer-valued time series models," MPRA Paper 76574, University Library of Munich, Germany, revised 03 Feb 2017.
- Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
- Blasques, F. & Gorgi, P. & Koopman, S.J., 2021.
"Missing observations in observation-driven time series models,"
Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
- Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2018. "Missing Observations in Observation-Driven Time Series Models," Tinbergen Institute Discussion Papers 18-013/III, Tinbergen Institute.
- F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
- Fokianos, Konstantinos, 2024. "Multivariate Count Time Series Modelling," Econometrics and Statistics, Elsevier, vol. 31(C), pages 100-116.
- Aknouche, Abdelhakim & Scotto, Manuel, 2022. "A multiplicative thinning-based integer-valued GARCH model," MPRA Paper 112475, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:5:p:1325-1347. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.