IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/21-4.html
   My bibliography  Save this paper

Networking the Yield Curve: Implications for Monetary Policy

Author

Listed:
  • Tatjana Dahlhaus
  • Julia Schaumburg
  • Tatevik Sekhposyan

Abstract

We introduce a flexible, time-varying network model to trace the propagation of interest rate surprises across different maturities. First, we develop a novel econometric framework that allows for unknown, potentially asymmetric contemporaneous spillovers across panel units and establish the finite sample properties of the model via simulations. Second, we employ this innovative framework to jointly model the dynamics of interest rate surprises and to assess how various monetary policy actions—for example, short-term, long-term interest rate targeting and forward guidance—propagate across the yield curve. We find that the network of interest rate surprises is indeed asymmetric and defined by spillovers between adjacent maturities. Spillover intensity is high on average but shows strong time variation. Forward guidance is an important driver of the spillover intensity. Pass-through from short-term interest rate surprises to longer maturities is muted, yet there are stronger spillovers associated with surprises at medium- and long-term maturities. We illustrate how our proposed framework helps our understanding of the ways various dimensions of monetary policy propagate through the yield curve and interact with each other.

Suggested Citation

  • Tatjana Dahlhaus & Julia Schaumburg & Tatevik Sekhposyan, 2021. "Networking the Yield Curve: Implications for Monetary Policy," Staff Working Papers 21-4, Bank of Canada.
  • Handle: RePEc:bca:bocawp:21-4
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2021/01/swp2021-4.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Rossi, Barbara, 2019. "The effects of conventional and unconventional monetary policy on exchange rates," Journal of International Economics, Elsevier, vol. 118(C), pages 419-447.
    2. Albert Lee Chun, 2011. "Expectations, Bond Yields, and Monetary Policy," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 208-247.
    3. Gergely Ganics & Barbara Rossi & Tatevik Sekhposyan, 2019. "From fixed-event to fixed-horizon density forecasts: obtaining measures of multi-horizon uncertainty from survey density forecasts," Working Papers 1947, Banco de España.
    4. Lam, Clifford & Souza, Pedro C.L., 2015. "Detection and estimation of block structure in spatial weight matrix," LSE Research Online Documents on Economics 59898, London School of Economics and Political Science, LSE Library.
    5. Bu, Chunya & Rogers, John & Wu, Wenbin, 2021. "A unified measure of Fed monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 331-349.
    6. Refet S Gürkaynak & Brian Sack & Eric Swanson, 2005. "Do Actions Speak Louder Than Words? The Response of Asset Prices to Monetary Policy Actions and Statements," International Journal of Central Banking, International Journal of Central Banking, vol. 1(1), May.
    7. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    8. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    9. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    10. Name 1 Dieter Wang Email 1 & Iman (I.P.P.) van Lelyveld & Julia (J.) Schaumburg, 2018. "Do information contagion and business model similarities explain bank credit risk commonalities?," Tinbergen Institute Discussion Papers 18-100/IV, Tinbergen Institute.
    11. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    12. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    13. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    14. Kuttner, Kenneth N., 2001. "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 523-544, June.
    15. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    16. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    17. Tonzer, Lena, 2015. "Cross-border interbank networks, banking risk and contagion," Journal of Financial Stability, Elsevier, vol. 18(C), pages 19-32.
    18. Jeffrey R. Campbell & Charles L. Evans & Jonas D.M. Fisher & Alejandro Justiniano, 2012. "Macroeconomic Effects of Federal Reserve Forward Guidance," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 1-80.
    19. Jonas Dovern & Ulrich Fritsche & Jiri Slacalek, 2012. "Disagreement Among Forecasters in G7 Countries," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1081-1096, November.
    20. Clifford Lam & Pedro C. L. Souza, 2016. "Detection and Estimation of Block Structure in Spatial Weight Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1347-1376, December.
    21. Andrew Harvey & Alessandra Luati, 2014. "Filtering With Heavy Tails," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
    22. Clifford Lam & Pedro C.L. Souza, 2020. "Estimation and Selection of Spatial Weight Matrix in a Spatial Lag Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 693-710, July.
    23. Name 1 Dieter Wang Email 1 & Iman (I.P.P.) van Lelyveld & Julia (J.) Schaumburg, 2018. "Do information contagion and business model similarities explain bank credit risk commonalities?," Tinbergen Institute Discussion Papers 18-100/IV, Tinbergen Institute.
    24. Knüppel, Malte & Vladu, Andreea L., 2016. "Approximating fixed-horizon forecasts using fixed-event forecasts," Discussion Papers 28/2016, Deutsche Bundesbank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marko Mlikota, 2022. "Cross-Sectional Dynamics Under Network Structure: Theory and Macroeconomic Applications," Papers 2211.13610, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    2. Hannes Böhm & Julia Schaumburg & Lena Tonzer, 2022. "Financial Linkages and Sectoral Business Cycle Synchronization: Evidence from Europe," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 698-734, December.
    3. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    4. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
    5. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    6. Anna Gloria Billé & Leopoldo Catania, 2018. "Dynamic Spatial Autoregressive Models with Time-varying Spatial Weighting Matrices," BEMPS - Bozen Economics & Management Paper Series BEMPS55, Faculty of Economics and Management at the Free University of Bozen.
    7. Bu, Chunya & Rogers, John & Wu, Wenbin, 2021. "A unified measure of Fed monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 331-349.
    8. Tatjana Dahlhaus & Luca Gambetti, 2018. "Noisy Monetary Policy," Staff Working Papers 18-23, Bank of Canada.
    9. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    10. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    11. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    12. Daniel J. Lewis, 2019. "Announcement-Specific Decompositions of Unconventional Monetary Policy Shocks and Their Macroeconomic Effects," Staff Reports 891, Federal Reserve Bank of New York.
    13. Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
    14. Siem Jan Koopman & Rutger Lit & André Lucas, 2015. "Intraday Stock Price Dependence using Dynamic Discrete Copula Distributions," Tinbergen Institute Discussion Papers 15-037/III/DSF90, Tinbergen Institute.
    15. Oliver Holtemöller & Alexander Kriwoluzky & Boreum Kwak, 2020. "Exchange Rates and the Information Channel of Monetary Policy," Discussion Papers of DIW Berlin 1906, DIW Berlin, German Institute for Economic Research.
    16. Heil, Thomas L.A. & Peter, Franziska J. & Prange, Philipp, 2022. "Measuring 25 years of global equity market co-movement using a time-varying spatial model," Journal of International Money and Finance, Elsevier, vol. 128(C).
    17. Swanson, Eric T., 2021. "Measuring the effects of federal reserve forward guidance and asset purchases on financial markets," Journal of Monetary Economics, Elsevier, vol. 118(C), pages 32-53.
    18. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    19. Brubakk, Leif & ter Ellen, Saskia & Robstad, Ørjan & Xu, Hong, 2022. "The macroeconomic effects of forward communication," Journal of International Money and Finance, Elsevier, vol. 120(C).
    20. Shang, Fei, 2022. "The effect of uncertainty on the sensitivity of the yield curve to monetary policy surprises," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).

    More about this item

    Keywords

    Econometric and statistical methods; Interest rates; Monetary policy implementation;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:21-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.