IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20240062.html
   My bibliography  Save this paper

Robust Multivariate Observation-Driven Filtering for a Common Stochastic Trend: Theory and Application

Author

Listed:
  • Francisco Blasques

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Janneke van Brummelen

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Paolo Gorgi

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

  • Siem Jan Koopman

    (Vrije Universiteit Amsterdam and Tinbergen Institute)

Abstract

We introduce a nonlinear semi-parametric model that allows for the robust filtering of a common stochastic trend in a multivariate system of cointegrated time series. The observation-driven stochastic trend can be specified using flexible updating mechanisms. The model provides a general approach to obtain an outlier-robust trend-cycle decomposition in a cointegrated multivariate process. A simple two-stage procedure for the estimation of the parameters of the model is proposed. In the first stage, the loadings of the common trend are estimated via ordinary least squares. In the second stage, the other parameters are estimated via Gaussian quasi-maximum likelihood. We formally derive the theory for the consistency of the estimators in both stages and show that the observation-driven stochastic trend can also be consistently estimated. A simulation study illustrates how such robust methodology can enhance the filtering accuracy of the trend compared to a linear approach as considered in previous literature. The practical relevance of the method is shown by means of an application to spot prices of oil-related commodities.

Suggested Citation

  • Francisco Blasques & Janneke van Brummelen & Paolo Gorgi & Siem Jan Koopman, 2024. "Robust Multivariate Observation-Driven Filtering for a Common Stochastic Trend: Theory and Application," Tinbergen Institute Discussion Papers 24-062/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20240062
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/24062.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    consistency; cycle; non-stationary time series; two-step estimation; vector autoregression;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20240062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.