Seasonality Detection in Small Samples using Score-Driven Nonlinear Multivariate Dynamic Location Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984.
"Pseudo Maximum Likelihood Methods: Theory,"
Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
- Gourieroux Christian & Monfort Alain & Trognon A, 1981. "Pseudo maximum likelihood methods : theory," CEPREMAP Working Papers (Couverture Orange) 8129, CEPREMAP.
- Szabolcs Blazsek & Marco Villatoro, 2015. "Is Beta- t -EGARCH(1,1) superior to GARCH(1,1)?," Applied Economics, Taylor & Francis Journals, vol. 47(17), pages 1764-1774, April.
- Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984.
"Pseudo Maximum Likelihood Methods: Applications to Poisson Models,"
Econometrica, Econometric Society, vol. 52(3), pages 701-720, May.
- Gourieroux Christian & Monfort Alain & Trognon A, 1982. "Pseudo maximum lilelihood methods : applications to poisson models," CEPREMAP Working Papers (Couverture Orange) 8203, CEPREMAP.
- Blazsek, Szabolcs & Escribano, Alvaro, 2010.
"Knowledge spillovers in US patents: A dynamic patent intensity model with secret common innovation factors,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 14-32, November.
- Blazsek, Szabolcs, 2009. "Knowledge spillovers in U.S. patents: a dynamic patent intensity model with secret common innovation factors," UC3M Working papers. Economics we098951, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Szabolcs Blazsek & Alvaro Escribano, 2010. "Knowledge spillovers in U.S. patents: A dynamic patent intensity model with secret common innovation factors," Post-Print hal-00732533, HAL.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Jeffrey M. Wooldridge, 2005.
"Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
- Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54.
- Jeffrey M. Wooldridge, 2002. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," CeMMAP working papers 18/02, Institute for Fiscal Studies.
- Jeffrey M. Wooldridge, 2002. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," CeMMAP working papers CWP18/02, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Kilian,Lutz & Lütkepohl,Helmut, 2018.
"Structural Vector Autoregressive Analysis,"
Cambridge Books,
Cambridge University Press, number 9781107196575, November.
- Kilian,Lutz & Lütkepohl,Helmut, 2017. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781316647332, November.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024, January.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, November.
- Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002.
"Individual effects and dynamics in count data models,"
Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
- Richard Blundell & Rachel Griffith & Frank Windmeijer, 1999. "Individual effects and dynamics in count data models," IFS Working Papers W99/03, Institute for Fiscal Studies.
- Szabolcs Blazsek & Han-Chiang Ho, 2017. "Markov regime-switching Beta--EGARCH," Applied Economics, Taylor & Francis Journals, vol. 49(47), pages 4793-4805, October.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- repec:hal:journl:peer-00732533 is not listed on IDEAS
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Szabolcs Blazsek & Vicente Mendoza, 2016. "QARMA-Beta- t -EGARCH versus ARMA-GARCH: an application to S&P 500," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1119-1129, March.
- Szabolcs Blazsek & Han-Chiang Ho & Su-Ping Liu, 2018. "Score-driven Markov-switching EGARCH models: an application to systematic risk analysis," Applied Economics, Taylor & Francis Journals, vol. 50(56), pages 6047-6060, December.
- Szabolcs Blazsek & Luis Antonio Monteros, 2017. "Event-study analysis by using dynamic conditional score models," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4530-4541, September.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Score-driven copula models for portfolios of two risky assets," The European Journal of Finance, Taylor & Francis Journals, vol. 24(18), pages 1861-1884, December.
- Blazsek, Szabolcs & Escribano, Alvaro, 2016.
"Score-driven dynamic patent count panel data models,"
Economics Letters, Elsevier, vol. 149(C), pages 116-119.
- Blazsek, Szabolcs, 2016. "Score-driven dynamic patent count panel data models," UC3M Working papers. Economics 23458, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Ayala, Astrid & Blazsek, Szabolcs, 2017. "Dynamic conditional score models with time-varying location, scale and shape parameters," UC3M Working papers. Economics 25043, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Lutz Kilian, 2008. "A Comparison of the Effects of Exogenous Oil Supply Shocks on Output and Inflation in the G7 Countries," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 78-121, March.
- Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
- Blazsek, Szabolcs & Licht, Adrian, 2017. "Score-driven non-linear multivariate dynamic location models," UC3M Working papers. Economics 25739, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Blazsek, Szabolcs & Licht, Adrian, 2019. "Co-integration and common trends analysis with score-driven models : an application to the federal funds effective rate and US inflation rate," UC3M Working papers. Economics 28451, Universidad Carlos III de Madrid. Departamento de EconomÃa.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal Quasi-Vector Autoregressive Models with an Application to Crude Oil Production and Economic Activity in the United States and Canada," UC3M Working papers. Economics 27484, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Astrid Ayala & Szabolcs Blazsek, 2019. "Score-driven currency exchange rate seasonality as applied to the Guatemalan Quetzal/US Dollar," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 10(1), pages 65-92, March.
- Blazsek, Szabolcs & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Blazsek, Szabolcs & Licht, Adrian, 2018. "Seasonal quasi-vector autoregressive models for macroeconomic data," UC3M Working papers. Economics 26316, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Blazsek Szabolcs & Escribano Alvaro & Licht Adrian, 2021. "Identification of Seasonal Effects in Impulse Responses Using Score-Driven Multivariate Location Models," Journal of Econometric Methods, De Gruyter, vol. 10(1), pages 53-66, January.
- Christian Francq & Genaro Sucarrat, 2018.
"An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation,"
Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
- Francq, Christian & Sucarrat, Genaro, 2013. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," MPRA Paper 51783, University Library of Munich, Germany.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022.
"Maximum likelihood estimation for score-driven models,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
- Blazsek, Szabolcs & Escribano, Alvaro, 2016.
"Score-driven dynamic patent count panel data models,"
Economics Letters, Elsevier, vol. 149(C), pages 116-119.
- Blazsek, Szabolcs, 2016. "Score-driven dynamic patent count panel data models," UC3M Working papers. Economics 23458, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024.
"Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models,"
Energy Economics, Elsevier, vol. 134(C).
- Blazsek, Szabolcs Istvan & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions: using score-driven threshold climate models," UC3M Working papers. Economics 39546, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016.
"Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models,"
Papers
1610.02863, arXiv.org.
- Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2018. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Post-Print hal-01377971, HAL.
- Aknouche, Abdelhakim & Francq, Christian, 2023.
"Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Aknouche, Abdelhakim & Francq, Christian, 2019. "Two-stage weighted least squares estimator of the conditional mean of observation-driven time series models," MPRA Paper 97382, University Library of Munich, Germany.
- Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Sebastian Bayer & Timo Dimitriadis, 2022. "Regression-Based Expected Shortfall Backtesting [Backtesting Expected Shortfall]," Journal of Financial Econometrics, Oxford University Press, vol. 20(3), pages 437-471.
- Blasques, F. & Gorgi, P. & Koopman, S.J., 2021.
"Missing observations in observation-driven time series models,"
Journal of Econometrics, Elsevier, vol. 221(2), pages 542-568.
- Francisco (F.) Blasques & Paolo Gorgi & Siem Jan (S.J.) Koopman, 2018. "Missing Observations in Observation-Driven Time Series Models," Tinbergen Institute Discussion Papers 18-013/III, Tinbergen Institute.
- Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de EconomÃa.
More about this item
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-10-15 (Econometrics)
- NEP-ETS-2018-10-15 (Econometric Time Series)
- NEP-MAC-2018-10-15 (Macroeconomics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:werepe:27483. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://www.eco.uc3m.es/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.