IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v45y2022ics1544612321002026.html
   My bibliography  Save this article

Modelling stock returns volatility with dynamic conditional score models and random shifts

Author

Listed:
  • Alanya-Beltran, Willy

Abstract

I propose and study a dynamic conditional score model with random shifts, the RS-Beta-t-EGARCH model, for modelling volatility in financial markets. The addition of random shifts can explain the high volatility persistence typically estimated for these financial series. This setting constitutes an alternative approach to long memory models; moreover, the new model identifies volatility clusters. I apply the model to stock returns in South American emerging markets. The estimates for the random shifts fit the main regime disturbance events in the period of study. Monte Carlo simulations show that the new model replicates the time and spectral domain properties of the original series. Finally, out-sample forecast evidence favors the new specification.

Suggested Citation

  • Alanya-Beltran, Willy, 2022. "Modelling stock returns volatility with dynamic conditional score models and random shifts," Finance Research Letters, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:finlet:v:45:y:2022:i:c:s1544612321002026
    DOI: 10.1016/j.frl.2021.102121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612321002026
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2021.102121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    2. Zhongjun Qu & Pierre Perron, 2013. "A stochastic volatility model with random level shifts and its applications to S&P 500 and NASDAQ return indices," Econometrics Journal, Royal Economic Society, vol. 16(3), pages 309-339, October.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
    5. Anne Opschoor & André Lucas, 2019. "Fractional Integration and Fat Tails for Realized Covariance Kernels," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 66-90.
    6. Harvey, Andrew & Palumbo, Dario, 2023. "Score-driven models for realized volatility," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    9. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    10. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    11. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    12. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    13. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alanya-Beltran Willy, 2023. "Modelling volatility dependence with score copula models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(5), pages 649-668, December.
    2. Salisu, Afees A. & Isah, Kazeem & Oloko, Tirimisiyu O., 2024. "Technology shocks and crude oil market connection: The role of climate change," Energy Economics, Elsevier, vol. 130(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    2. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    3. Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Memory that Drives! New Insights into Forecasting Performance of Stock Prices from SEMIFARMA-AEGAS Model," Working Papers of BETA 2019-24, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    4. Mohamed Chikhi & Claude Diebolt & Tapas Mishra, 2019. "Measuring Success: Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers 11-19, Association Française de Cliométrie (AFC).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Szabolcs Blazsek & Marco Villatoro, 2015. "Is Beta- t -EGARCH(1,1) superior to GARCH(1,1)?," Applied Economics, Taylor & Francis Journals, vol. 47(17), pages 1764-1774, April.
    7. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    8. Mohamed CHIKHI & Claude DIEBOLT & Tapas MISHRA, 2019. "Does Predictive Ability of an Asset Price Rest in 'Memory'? Insights from a New Approach," Working Papers of BETA 2019-43, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    9. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    10. Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
    11. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    12. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    13. Yingying Xu & Donald Lien, 2022. "Forecasting volatilities of oil and gas assets: A comparison of GAS, GARCH, and EGARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 259-278, March.
    14. Domenico Di Gangi & Giacomo Bormetti & Fabrizio Lillo, 2022. "Score Driven Generalized Fitness Model for Sparse and Weighted Temporal Networks," Papers 2202.09854, arXiv.org, revised Mar 2022.
    15. Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
    16. Alanya-Beltran Willy, 2023. "Modelling volatility dependence with score copula models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(5), pages 649-668, December.
    17. Anne Opschoor & Dick van Dijk & Michel van der Wel, 2014. "Improving Density Forecasts and Value-at-Risk Estimates by Combining Densities," Tinbergen Institute Discussion Papers 14-090/III, Tinbergen Institute.
    18. Szabolcs Blazsek & Hector Hernández, 2018. "Analysis of electricity prices for Central American countries using dynamic conditional score models," Empirical Economics, Springer, vol. 55(4), pages 1807-1848, December.
    19. Szabolcs Blazsek & Vicente Mendoza, 2016. "QARMA-Beta- t -EGARCH versus ARMA-GARCH: an application to S&P 500," Applied Economics, Taylor & Francis Journals, vol. 48(12), pages 1119-1129, March.
    20. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.

    More about this item

    Keywords

    Beta-t-EGARCH; Random shifts; Stock returns; Emerging markets;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:45:y:2022:i:c:s1544612321002026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.