IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.14734.html
   My bibliography  Save this paper

The continuous-time limit of quasi score-driven volatility models

Author

Listed:
  • Yinhao Wu
  • Ping He

Abstract

This paper explores the continuous-time limit of a class of Quasi Score-Driven (QSD) models that characterize volatility. As the sampling frequency increases and the time interval tends to zero, the model weakly converges to a continuous-time stochastic volatility model where the two Brownian motions are correlated, thereby capturing the leverage effect in the market. Subsequently, we identify that a necessary condition for non-degenerate correlation is that the distribution of driving innovations differs from that of computing score, and at least one being asymmetric. We then illustrate this with two typical examples. As an application, the QSD model is used as an approximation for correlated stochastic volatility diffusions and quasi maximum likelihood estimation is performed. Simulation results confirm the method's effectiveness, particularly in estimating the correlation coefficient.

Suggested Citation

  • Yinhao Wu & Ping He, 2024. "The continuous-time limit of quasi score-driven volatility models," Papers 2409.14734, arXiv.org.
  • Handle: RePEc:arx:papers:2409.14734
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.14734
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Hafner, Christian M. & Laurent, Sebastien & Violante, Francesco, 2017. "Weak Diffusion Limits Of Dynamic Conditional Correlation Models," Econometric Theory, Cambridge University Press, vol. 33(3), pages 691-716, June.
    3. Fornari, Fabio & Mele, Antonio, 2006. "Approximating volatility diffusions with CEV-ARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 30(6), pages 931-966, June.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Laurent, Sébastien & Lecourt, Christelle & Palm, Franz C., 2016. "Testing for jumps in conditionally Gaussian ARMA–GARCH models, a robust approach," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 383-400.
    6. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2023. "Quasi score-driven models," Journal of Econometrics, Elsevier, vol. 234(1), pages 251-275.
    9. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    10. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    15. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    16. Barone-Adesi, Giovanni & Rasmussen, Henrik & Ravanelli, Claudia, 2005. "An option pricing formula for the GARCH diffusion model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 287-310, April.
    17. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    18. P Gorgi & C S A Lauria & A Luati, 2024. "On the optimality of score-driven models," Biometrika, Biometrika Trust, vol. 111(3), pages 865-880.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    2. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    3. Ding, Yashuang (Dexter), 2023. "A simple joint model for returns, volatility and volatility of volatility," Journal of Econometrics, Elsevier, vol. 232(2), pages 521-543.
    4. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    5. Fabio Fornari & Antonio Mele, 1997. "Weak convergence and distributional assumptions for a general class of nonliner arch models," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 205-227.
    6. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    7. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    8. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    10. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    11. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    12. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
    14. Wilson Ye Chen & Richard H. Gerlach, 2017. "Semiparametric GARCH via Bayesian model averaging," Papers 1708.07587, arXiv.org.
    15. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
    16. Peter Reinhard Hansen & Chen Tong, 2022. "Option Pricing with Time-Varying Volatility Risk Aversion," Papers 2204.06943, arXiv.org, revised Aug 2024.
    17. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    18. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    19. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2021. "Analytic moments for GJR-GARCH (1, 1) processes," International Journal of Forecasting, Elsevier, vol. 37(1), pages 105-124.
    20. Hafner, Christian M. & Herwartz, Helmut, 2001. "Option pricing under linear autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 1-34, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.14734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.