IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2020016.html
   My bibliography  Save this paper

Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving

Author

Listed:
  • Denuit, Michel

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Lu, Yang

Abstract

This paper studies multivariate mixtures with Wishart-Gamma mixing distribution. Af- ter having recalled the definition and main properties of Wishart distributions for random symmetric positive definite matrices, it is shown how they can be used to extend Gamma distributions to the multivariate case, by considering the joint distribution of the diagonal terms. The resulting distribution, which we call Wishart-Gamma distribution, appears to be particularly useful to model correlated random effects in multivariate frequency, severity and duration models, leading to closed form likelihood function and posterior ratemak- ing formula. Three main applications are discussed to demonstrate the versatility of the Wishart-Gamma mixture models: (i) experience rating with several policies or guarantees per policyholder, (ii) experience rating taking into account the correlation between claim fre- quency and severity components, and (iii) dependence modeling between time-to-payment and amount of payment in micro-loss reserving when the ultimate payment is subject to censoring. Besides introducing the Wishart and Wishart-Gamma distributions, we are also among one of the first to employ the techniques such as fractional integral and symbolic calculation in the non-life actuarial literature.

Suggested Citation

  • Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2020016
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A230385/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Griffiths, R. C., 1984. "Characterization of infinitely divisible multivariate gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 15(1), pages 13-20, August.
    3. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
    4. Chiarella, Carl & Da Fonseca, José & Grasselli, Martino, 2014. "Pricing range notes within Wishart affine models," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 193-203.
    5. Dionne, Georges & Vanasse, Charles, 1989. "A Generalization of Automobile Insurance Rating Models: The Negative Binomial Distribution with a Regression Component," ASTIN Bulletin, Cambridge University Press, vol. 19(2), pages 199-212, November.
    6. Pechon, Florian & Trufin, Julien & Denuit, Michel, 2018. "Multivariate modelling of household claim frequencies in motor third-party liability insurance," LIDAM Reprints ISBA 2018035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Englund, Martin & Guillén, Montserrat & Gustafsson, Jim & Nielsen, Lars Hougaard & Nielsen, Jens Perch, 2008. "Multivariate Latent Risk: A Credibility Approach," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 137-146, May.
    8. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    9. Shi, Peng & Valdez, Emiliano A., 2014. "Multivariate negative binomial models for insurance claim counts," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 18-29.
    10. Christian Gouriéroux & Yang Lu, 2019. "Negative Binomial Autoregressive Process with Stochastic Intensity," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(2), pages 225-247, March.
    11. Alai, Daniel H. & Landsman, Zinoviy & Sherris, Michael, 2013. "Lifetime dependence modelling using a truncated multivariate gamma distribution," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 542-549.
    12. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    13. Robin Henderson, 2003. "A serially correlated gamma frailty model for longitudinal count data," Biometrika, Biometrika Trust, vol. 90(2), pages 355-366, June.
    14. Pinquet, Jean, 1998. "Designing Optimal Bonus-Malus Systems from Different Types of Claims," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 205-220, November.
    15. Lu Yang & Peng Shi, 2019. "Multiperil rate making for property insurance using longitudinal data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 647-668, February.
    16. Edward Frees & Ping Wang, 2005. "Credibility Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 9(2), pages 31-48.
    17. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    18. Pechon, Florian & Trufin, Julien & Denuit, Michel, 2018. "Multivariate Modelling Of Household Claim Frequencies In Motor Third-Party Liability Insurance," ASTIN Bulletin, Cambridge University Press, vol. 48(3), pages 969-993, September.
    19. Yang Lu, 2017. "Broken-Heart, Common Life, Heterogeneity: Analyzing the Spousal Mortality Dependence," Post-Print hal-03583117, HAL.
    20. Willmot, Gordon E. & Woo, Jae-Kyung, 2012. "On the analysis of a general class of dependent risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 134-141.
    21. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    22. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    23. Lu, Yang, 2017. "Broken-Heart, Common Life, Heterogeneity: Analyzing The Spousal Mortality Dependence," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 837-874, September.
    24. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    25. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    26. Chiu, Mei Choi & Wong, Hoi Ying, 2014. "Mean–variance asset–liability management with asset correlation risk and insurance liabilities," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 300-310.
    27. Anas Abdallah & Jean-Philippe Boucher & Hélène Cossette & Julien Trufin, 2016. "Sarmanov Family of Bivariate Distributions for Multivariate Loss Reserving Analysis," North American Actuarial Journal, Taylor & Francis Journals, vol. 20(2), pages 184-200, April.
    28. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    29. Mathieu Bargès & Hélène Cossette & Etienne Marceau, 2009. "TVaR-based capital allocation with copulas," Working Papers hal-00431265, HAL.
    30. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    31. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Multivariate modelling of multiple guarantees in motor insurance of a household," LIDAM Reprints ISBA 2019031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    32. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    33. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
    34. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    35. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    36. Bargès, Mathieu & Cossette, Hélène & Marceau, Étienne, 2009. "TVaR-based capital allocation with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 348-361, December.
    37. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    38. Baumgartner, Carolin & Gruber, Lutz F. & Czado, Claudia, 2015. "Bayesian total loss estimation using shared random effects," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 194-201.
    39. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    40. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    2. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    3. Yang Lu, 2018. "Dynamic Frailty Count Process in Insurance: A Unified Framework for Estimation, Pricing, and Forecasting," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 85(4), pages 1083-1102, December.
    4. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    5. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    6. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2019. "Home and Motor insurance joined at a household level using multivariate credibility," LIDAM Discussion Papers ISBA 2019013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    8. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    9. Pechon, Florian & Denuit, Michel & Trufin, Julien, 2018. "Multivariate Modelling of Multiple Guarantees in Motor Insurance of a Household," LIDAM Discussion Papers ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
    11. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    12. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    13. Catalina Bolancé & Raluca Vernic, 2020. "Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
    14. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    15. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    16. Tzougas, George & Pignatelli di Cerchiara, Alice, 2021. "The multivariate mixed Negative Binomial regression model with an application to insurance a posteriori ratemaking," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 602-625.
    17. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    18. Li, Yinhuan & Fung, Tsz Chai & Peng, Liang & Qian, Linyi, 2023. "Diagnostic tests before modeling longitudinal actuarial data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 310-325.
    19. Anas Abdallah & Lan Wang, 2023. "Rank-Based Multivariate Sarmanov for Modeling Dependence between Loss Reserves," Risks, MDPI, vol. 11(11), pages 1-37, October.
    20. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2020016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.