The impact of the Russia–Ukraine conflict on the energy subsector stocks in China: A network-based approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2023.103645
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
- Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
- Cao, Jie & Wen, Fenghua & Stanley, H. Eugene & Wang, Xiong, 2021. "Multilayer financial networks and systemic importance: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 78(C).
- R. Mantegna, 1999.
"Hierarchical structure in financial markets,"
The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
- Rosario N. Mantegna, 1998. "Hierarchical Structure in Financial Markets," Papers cond-mat/9802256, arXiv.org.
- Chen, Yanhua & Pantelous, Athanasios A., 2022. "The U.S.-China trade conflict impacts on the Chinese and U.S. stock markets: A network-based approach," Finance Research Letters, Elsevier, vol. 46(PB).
- Sun, Qingru & Gao, Xiangyun & An, Haizhong & Guo, Sui & Liu, Xueyong & Wang, Ze, 2021. "Which time-frequency domain dominates spillover in the Chinese energy stock market?," International Review of Financial Analysis, Elsevier, vol. 73(C).
- Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
- Cody Yu-Ling Hsiao & James Morley, 2022.
"Debt and financial market contagion,"
Empirical Economics, Springer, vol. 62(4), pages 1599-1648, April.
- Cody Yu-Ling Hsiao & James Morley, 2015. "Debt and Financial Market Contagion," Discussion Papers 2015-02, School of Economics, The University of New South Wales.
- Diebold, Francis X. & Yilmaz, Kamil, 2012.
"Better to give than to receive: Predictive directional measurement of volatility spillovers,"
International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
- Francis X. Diebold & Kamil Yilmaz, 2010. "Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillovers," Koç University-TUSIAD Economic Research Forum Working Papers 1001, Koc University-TUSIAD Economic Research Forum, revised Mar 2010.
- Fry-McKibbin, Renée & Greenwood-Nimmo, Matthew & Hsiao, Cody Yu-Ling & Qi, Lin, 2022.
"Higher-order comoment contagion among G20 equity markets during the COVID-19 pandemic,"
Finance Research Letters, Elsevier, vol. 45(C).
- Renée Fry-McKibbin & Matthew Greenwood-Nimmo & Cody Yu-Ling Hsiao & Lin Qi, 2021. "Higher-order comoment contagion among G20 equity markets during the COVID-19 pandemic," CAMA Working Papers 2021-36, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ouyang, Ruolan & Zhuang, Chengkai & Wang, Tingting & Zhang, Xuan, 2022. "Network analysis of risk transmission among energy futures: An industrial chain perspective," Energy Economics, Elsevier, vol. 107(C).
- Yousaf, Imran & Patel, Ritesh & Yarovaya, Larisa, 2022. "The reaction of G20+ stock markets to the Russia–Ukraine conflict “black-swan” event: Evidence from event study approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 35(C).
- Martin Nerlinger & Sebastian Utz, 2022. "The impact of the Russia-Ukraine conflict on the green energy transition – A capital market perspective," Swiss Finance Institute Research Paper Series 22-49, Swiss Finance Institute.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Wang, Ze & Gao, Xiangyun & An, Haizhong & Tang, Renwu & Sun, Qingru, 2020. "Identifying influential energy stocks based on spillover network," International Review of Financial Analysis, Elsevier, vol. 68(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ferriani, Fabrizio & Gazzani, Andrea, 2023.
"The invasion of Ukraine and the energy crisis: Comparative advantages in equity valuations,"
Finance Research Letters, Elsevier, vol. 58(PD).
- Fabrizio Ferriani & Andrea Gazzani, 2023. "The invasion of Ukraine and the energy crisis: comparative advantages in equity valuations," Questioni di Economia e Finanza (Occasional Papers) 789, Bank of Italy, Economic Research and International Relations Area.
- Hsiao, Cody Yu-Ling & Chiu, Yi-Bin, 2024. "Financial contagion and networks among the oil and BRICS stock markets during seven episodes of crisis events," Journal of International Money and Finance, Elsevier, vol. 144(C).
- Lu, Xunfa & Huang, Nan & Mo, Jianlei, 2024. "Time-varying causalities from the COVID-19 media coverage to the dynamic spillovers among the cryptocurrency, the clean energy, and the crude oil," Energy Economics, Elsevier, vol. 132(C).
- Domenico Depalo, 2024. "Gloomy expectations after the invasion of Ukraine," Empirical Economics, Springer, vol. 67(1), pages 97-109, July.
- Jin, Xiu & Xue, Qiuyang, 2023. "Retail investor attention and stock market behavior in Russia-Ukraine conflict based on Chinese practices: Evidence from transfer entropy causal network," Finance Research Letters, Elsevier, vol. 58(PB).
- Balash, Vladimir & Faizliev, Alexey, 2024. "Volatility spillovers across Russian oil and gas sector. Evidence of the impact of global markets and extraordinary events," Energy Economics, Elsevier, vol. 129(C).
- Deng, Jing & Zheng, Huike & Xing, Xiaoyun, 2023. "Dynamic spillover and systemic importance analysis of global clean energy companies: A tail risk network perspective," Finance Research Letters, Elsevier, vol. 55(PB).
- Xing, Xiaoyun & Chen, Ying & Wang, Xiuya & Li, Boyao & Deng, Jing, 2023. "The impact of national carbon market establishment on risk transmission among carbon and energy markets in China: A systemic importance analysis," Finance Research Letters, Elsevier, vol. 57(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ouyang, Ruolan & Zhuang, Chengkai & Wang, Tingting & Zhang, Xuan, 2022. "Network analysis of risk transmission among energy futures: An industrial chain perspective," Energy Economics, Elsevier, vol. 107(C).
- Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
- Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
- Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
- Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
- Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021.
"“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic,"
International Review of Financial Analysis, Elsevier, vol. 78(C).
- Akanksha Jalan & Roman Matkovskyy & Larisa Yarovaya, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," Post-Print hal-03512893, HAL.
- Ouyang, Ruolan & Chen, Xiang & Fang, Yi & Zhao, Yang, 2022. "Systemic risk of commodity markets: A dynamic factor copula approach," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).
- Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
- Dai, Zhifeng & Hu, Juan & Liu, Xinheng & Yang, Mi, 2024. "ynamic time-domain and frequency-domain spillovers and portfolio strategies between climate change attention and energy-relevant markets," Energy Economics, Elsevier, vol. 134(C).
- Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Mensi, Walid & Hanif, Waqas & Vo, Xuan Vinh & Choi, Ki-Hong & Yoon, Seong-Min, 2023. "Upside/Downside spillovers between oil and Chinese stock sectors: From the global financial crisis to global pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
- Ren, Xiaohang & Li, Yiying & Sun, Xianming & Bu, Ruijun & Jawadi, Fredj, 2023.
"Modeling extreme risk spillovers between crude oil and Chinese energy futures markets,"
Energy Economics, Elsevier, vol. 126(C).
- Xiaohang Ren & Yiying Li & Xianming Sun & Ruijun Bu & Fredj Jawadi, 2023. "Modeling extreme risk spillovers between crude oil and Chinese energy futures markets," Post-Print hal-04478730, HAL.
- Jing Deng & Yujie Zheng & Yun Zhang & Cheng Liu & Huanxue Pan, 2023. "Dynamic Spillovers between Carbon Price and Power Sector Returns in China: A Network-Based Analysis before and after Launching National Carbon Emissions Trading Market," Energies, MDPI, vol. 16(14), pages 1-27, July.
- Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
- Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).
- Gong, Yuting & He, Zhongzhi & Xue, Wenjun, 2022. "EPU spillovers and stock return predictability: A cross-country study," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
- Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
- Jun Long & Xianghui Yuan & Liwei Jin & Chencheng Zhao, 2024. "Connectedness and risk spillover in China's commodity futures sectors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 784-802, May.
More about this item
Keywords
The Russia–Ukraine conflict; Energy stock market; Risk transmission; Network analysis;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
- G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
- D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:53:y:2023:i:c:s1544612323000193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.