IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v53y2023ics1544612323000193.html
   My bibliography  Save this article

The impact of the Russia–Ukraine conflict on the energy subsector stocks in China: A network-based approach

Author

Listed:
  • Xing, Xiaoyun
  • Xu, Zihan
  • Chen, Ying
  • Ouyang, WenPei
  • Deng, Jing
  • Pan, Huanxue

Abstract

This paper explores the impact of the Russia–Ukraine conflict on the risk transmission of energy subsector stocks in China. Risk spillovers are quantified by the Diebold and Yilmaz index model. Based on the minimum spanning tree analysis, we identify the systematically important energy stocks and the shortest transmission paths. The results show that the key energy stocks in terms of volatility correlations would certainly change during the Russia–Ukraine conflict. In normal times, the traditional stocks act as the hubs of risk contagion. However, during the conflict, several renewable energy stocks tend to influence other stocks in the system.

Suggested Citation

  • Xing, Xiaoyun & Xu, Zihan & Chen, Ying & Ouyang, WenPei & Deng, Jing & Pan, Huanxue, 2023. "The impact of the Russia–Ukraine conflict on the energy subsector stocks in China: A network-based approach," Finance Research Letters, Elsevier, vol. 53(C).
  • Handle: RePEc:eee:finlet:v:53:y:2023:i:c:s1544612323000193
    DOI: 10.1016/j.frl.2023.103645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323000193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cody Yu-Ling Hsiao & James Morley, 2022. "Debt and financial market contagion," Empirical Economics, Springer, vol. 62(4), pages 1599-1648, April.
    2. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    3. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    4. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Fry-McKibbin, Renée & Greenwood-Nimmo, Matthew & Hsiao, Cody Yu-Ling & Qi, Lin, 2022. "Higher-order comoment contagion among G20 equity markets during the COVID-19 pandemic," Finance Research Letters, Elsevier, vol. 45(C).
    6. Ouyang, Ruolan & Zhuang, Chengkai & Wang, Tingting & Zhang, Xuan, 2022. "Network analysis of risk transmission among energy futures: An industrial chain perspective," Energy Economics, Elsevier, vol. 107(C).
    7. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
    8. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    9. Yousaf, Imran & Patel, Ritesh & Yarovaya, Larisa, 2022. "The reaction of G20+ stock markets to the Russia–Ukraine conflict “black-swan” event: Evidence from event study approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 35(C).
    10. Cao, Jie & Wen, Fenghua & Stanley, H. Eugene & Wang, Xiong, 2021. "Multilayer financial networks and systemic importance: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 78(C).
    11. Martin Nerlinger & Sebastian Utz, 2022. "The impact of the Russia-Ukraine conflict on the green energy transition – A capital market perspective," Swiss Finance Institute Research Paper Series 22-49, Swiss Finance Institute.
    12. Chen, Yanhua & Pantelous, Athanasios A., 2022. "The U.S.-China trade conflict impacts on the Chinese and U.S. stock markets: A network-based approach," Finance Research Letters, Elsevier, vol. 46(PB).
    13. Sun, Qingru & Gao, Xiangyun & An, Haizhong & Guo, Sui & Liu, Xueyong & Wang, Ze, 2021. "Which time-frequency domain dominates spillover in the Chinese energy stock market?," International Review of Financial Analysis, Elsevier, vol. 73(C).
    14. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    15. Wang, Ze & Gao, Xiangyun & An, Haizhong & Tang, Renwu & Sun, Qingru, 2020. "Identifying influential energy stocks based on spillover network," International Review of Financial Analysis, Elsevier, vol. 68(C).
    16. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferriani, Fabrizio & Gazzani, Andrea, 2023. "The invasion of Ukraine and the energy crisis: Comparative advantages in equity valuations," Finance Research Letters, Elsevier, vol. 58(PD).
    2. Jin, Xiu & Xue, Qiuyang, 2023. "Retail investor attention and stock market behavior in Russia-Ukraine conflict based on Chinese practices: Evidence from transfer entropy causal network," Finance Research Letters, Elsevier, vol. 58(PB).
    3. Balash, Vladimir & Faizliev, Alexey, 2024. "Volatility spillovers across Russian oil and gas sector. Evidence of the impact of global markets and extraordinary events," Energy Economics, Elsevier, vol. 129(C).
    4. Lu, Xunfa & Huang, Nan & Mo, Jianlei, 2024. "Time-varying causalities from the COVID-19 media coverage to the dynamic spillovers among the cryptocurrency, the clean energy, and the crude oil," Energy Economics, Elsevier, vol. 132(C).
    5. Domenico Depalo, 2024. "Gloomy expectations after the invasion of Ukraine," Empirical Economics, Springer, vol. 67(1), pages 97-109, July.
    6. Deng, Jing & Zheng, Huike & Xing, Xiaoyun, 2023. "Dynamic spillover and systemic importance analysis of global clean energy companies: A tail risk network perspective," Finance Research Letters, Elsevier, vol. 55(PB).
    7. Xing, Xiaoyun & Chen, Ying & Wang, Xiuya & Li, Boyao & Deng, Jing, 2023. "The impact of national carbon market establishment on risk transmission among carbon and energy markets in China: A systemic importance analysis," Finance Research Letters, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Ruolan & Zhuang, Chengkai & Wang, Tingting & Zhang, Xuan, 2022. "Network analysis of risk transmission among energy futures: An industrial chain perspective," Energy Economics, Elsevier, vol. 107(C).
    2. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    3. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
    4. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    5. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    6. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    7. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    8. Ouyang, Ruolan & Chen, Xiang & Fang, Yi & Zhao, Yang, 2022. "Systemic risk of commodity markets: A dynamic factor copula approach," International Review of Financial Analysis, Elsevier, vol. 82(C).
    9. Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).
    10. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    11. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    12. Mensi, Walid & Hanif, Waqas & Vo, Xuan Vinh & Choi, Ki-Hong & Yoon, Seong-Min, 2023. "Upside/Downside spillovers between oil and Chinese stock sectors: From the global financial crisis to global pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    13. Ren, Xiaohang & Li, Yiying & Sun, Xianming & Bu, Ruijun & Jawadi, Fredj, 2023. "Modeling extreme risk spillovers between crude oil and Chinese energy futures markets," Energy Economics, Elsevier, vol. 126(C).
    14. Jing Deng & Yujie Zheng & Yun Zhang & Cheng Liu & Huanxue Pan, 2023. "Dynamic Spillovers between Carbon Price and Power Sector Returns in China: A Network-Based Analysis before and after Launching National Carbon Emissions Trading Market," Energies, MDPI, vol. 16(14), pages 1-27, July.
    15. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    16. Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).
    17. Gong, Yuting & He, Zhongzhi & Xue, Wenjun, 2022. "EPU spillovers and stock return predictability: A cross-country study," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
    18. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
    19. Jun Long & Xianghui Yuan & Liwei Jin & Chencheng Zhao, 2024. "Connectedness and risk spillover in China's commodity futures sectors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 784-802, May.
    20. Wang, Yu-Min & Lin, Che-Chun & Tsai, I-Chun, 2023. "State transformation of information spillover in asset markets and effective dynamic hedging strategies," International Review of Financial Analysis, Elsevier, vol. 89(C).

    More about this item

    Keywords

    The Russia–Ukraine conflict; Energy stock market; Risk transmission; Network analysis;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:53:y:2023:i:c:s1544612323000193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.