IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v78y2019icp64-80.html
   My bibliography  Save this article

A seasonal copula mixture for hedging the clean spark spread with wind power futures

Author

Listed:
  • Christensen, Troels Sønderby
  • Pircalabu, Anca
  • Høg, Esben

Abstract

The recently introduced German wind power futures have brought the opportunity to address the problem of volume risk in wind power generation directly. In this paper, we study the hedging benefits of these instruments in the context of peak gas-fired power plants, by employing a strategy that allows trading in the day-ahead clean spark spread and wind power futures. To facilitate hedging decisions, we propose a seasonal copula mixture for the joint behavior of the day-ahead clean spark spread and the daily wind index. The model describes the data surprisingly well, both in terms of the marginals and the dependence structure, while being straightforward and easy to implement. Based on Monte Carlo simulations from the proposed model, the results indicate that significant benefits can be achieved by using wind power futures. Moreover, a comparison study shows that accounting for asymmetry, tail dependence, and seasonality in the dependence structure is especially important in the context of risk management.

Suggested Citation

  • Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
  • Handle: RePEc:eee:eneeco:v:78:y:2019:i:c:p:64-80
    DOI: 10.1016/j.eneco.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988318304420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial dependence in wind and optimal wind power allocation: A copula-based analysis," Energy Policy, Elsevier, vol. 39(9), pages 4742-4754, September.
    2. Aepli, Matthias D. & Füss, Roland & Henriksen, Tom Erik S. & Paraschiv, Florentina, 2017. "Modeling the multivariate dynamic dependence structure of commodity futures portfolios," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 66-87.
    3. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    4. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    5. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    6. Härdle, Wolfgang Karl & López Cabrera, Brenda, 2009. "Implied market price of weather risk," SFB 649 Discussion Papers 2009-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Alexandra Dias & Paul Embrechts, 2009. "Testing for structural changes in exchange rates' dependence beyond linear correlation," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 619-637.
    8. Fred Espen Benth & Jūratė Šaltytė-Benth, 2004. "The Normal Inverse Gaussian Distribution And Spot Price Modelling In Energy Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 177-192.
    9. Anca Pircalabu & Jesper Jung, 2017. "A mixed C-vine copula model for hedging price and volumetric risk in wind power trading," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1583-1600, October.
    10. Haldrup Niels & Nielsen Morten Ø., 2006. "Directional Congestion and Regime Switching in a Long Memory Model for Electricity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-24, September.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    13. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    14. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    15. Fred Espen Benth & Jūratė Šaltytė Benth, 2011. "Weather Derivatives and Stochastic Modelling of Temperature," International Journal of Stochastic Analysis, Hindawi, vol. 2011, pages 1-21, July.
    16. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    17. Reik Börger & Álvaro Cartea & Rüdiger Kiesel & Gero Schindlmayr, 2009. "Cross‐commodity analysis and applications to risk management," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(3), pages 197-217, March.
    18. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-10.
    19. Fred Espen Benth & Paul Kettler, 2010. "Dynamic copula models for the spark spread," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 407-421.
    20. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    21. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    22. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    23. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    24. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    25. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial Dependence in Wind and Optimal Wind Power Allocation: A Copula Based Analysis," EWI Working Papers 2011-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    26. Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
    27. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    28. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thakur, Jagruti & Hesamzadeh, Mohammad Reza & Date, Paresh & Bunn, Derek, 2023. "Pricing and hedging wind power prediction risk with binary option contracts," Energy Economics, Elsevier, vol. 126(C).
    2. Wang, Haiying & Yuan, Ying & Li, Yiou & Wang, Xunhong, 2021. "Financial contagion and contagion channels in the forex market: A new approach via the dynamic mixture copula-extreme value theory," Economic Modelling, Elsevier, vol. 94(C), pages 401-414.
    3. Geovanny Marulanda & Antonio Bello & Jenny Cifuentes & Javier Reneses, 2020. "Wind Power Long-Term Scenario Generation Considering Spatial-Temporal Dependencies in Coupled Electricity Markets," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.
    5. Spodniak, Petr & Bertsch, Valentin, 2020. "Is flexible and dispatchable generation capacity rewarded in electricity futures markets? A multinational impact analysis," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pircalabu, A. & Benth, F.E., 2017. "A regime-switching copula approach to modeling day-ahead prices in coupled electricity markets," Energy Economics, Elsevier, vol. 68(C), pages 283-302.
    2. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    5. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    6. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    7. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    8. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    9. Johannes Kaufmann & Philipp Artur Kienscherf & Wolfgang Ketter, 2020. "Modeling and Managing Joint Price and Volumetric Risk for Volatile Electricity Portfolios," Energies, MDPI, vol. 13(14), pages 1-19, July.
    10. Pircalabu, A. & Hvolby, T. & Jung, J. & Høg, E., 2017. "Joint price and volumetric risk in wind power trading: A copula approach," Energy Economics, Elsevier, vol. 62(C), pages 139-154.
    11. Tranberg, Bo & Hansen, Rasmus Thrane & Catania, Leopoldo, 2020. "Managing volumetric risk of long-term power purchase agreements," Energy Economics, Elsevier, vol. 85(C).
    12. Krenar AVDULAJ & Jozef BARUNIK, 2013. "Can We Still Benefit from International Diversification? The Case of the Czech and German Stock Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 425-442, November.
    13. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    14. Chang, Kuang-Liang, 2023. "The low-magnitude and high-magnitude asymmetries in tail dependence structures in international equity markets and the role of bilateral exchange rate," Journal of International Money and Finance, Elsevier, vol. 133(C).
    15. Tong, Bin & Diao, Xundi & Wu, Chongfeng, 2015. "Modeling asymmetric and dynamic dependence of overnight and daytime returns: An empirical evidence from China Banking Sector," Economic Modelling, Elsevier, vol. 51(C), pages 366-382.
    16. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    17. Tong, Bin & Wu, Chongfeng & Zhou, Chunyang, 2013. "Modeling the co-movements between crude oil and refined petroleum markets," Energy Economics, Elsevier, vol. 40(C), pages 882-897.
    18. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    19. Hosius, Emil & Seebaß, Johann V. & Wacker, Benjamin & Schlüter, Jan Chr., 2023. "The impact of offshore wind energy on Northern European wholesale electricity prices," Applied Energy, Elsevier, vol. 341(C).
    20. Mauro Bernardi & Leopoldo Catania, 2016. "Portfolio Optimisation Under Flexible Dynamic Dependence Modelling," Papers 1601.05199, arXiv.org.

    More about this item

    Keywords

    Clean spark spread; Wind power futures; Copula models; Time-varying dependence; Hedging;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:78:y:2019:i:c:p:64-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.