Time-varying higher moments in Bitcoin
Author
Abstract
Suggested Citation
DOI: 10.1007/s42521-022-00072-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
- Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
- Christian M Hafner, 2020.
"Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
- HAFNER Christian,, 2018. "Testing for bubbles in cryptocurrencies with time-varying volatility," LIDAM Discussion Papers CORE 2018019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Hafner, Christian M., 2018. "Testing for bubbles in cryptocurrencies with time-varying volatility," IRTG 1792 Discussion Papers 2018-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Hafner, Christian, 2018. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," LIDAM Reprints ISBA 2018045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Christian M. Hafner, 2018. "Testing for bubbles in cryptocurrencies with time-varying volatility," LIDAM Reprints CORE 3025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Diebold, Francis X. & Inoue, Atsushi, 2001.
"Long memory and regime switching,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
- Francis X. Diebold & Atsushi Inoue, 2000. "Long Memory and Regime Switching," NBER Technical Working Papers 0264, National Bureau of Economic Research, Inc.
- Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
- Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
- Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
- Zhu, Dongming & Galbraith, John W., 2010.
"A generalized asymmetric Student-t distribution with application to financial econometrics,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
- John Galbraith & Dongming Zhu, 2009. "A Generalized Asymmetric Student-T Distribution With Application To Financial Econometrics," Departmental Working Papers 2009-02, McGill University, Department of Economics.
- Dongming Zhu & John W. Galbraith, 2009. "A Generalized Asymmetric Student-t Distribution with Application to Financial Econometrics," CIRANO Working Papers 2009s-13, CIRANO.
- Kuo-Shing Chen & Yu-Chuan Huang, 2021. "Detecting Jump Risk and Jump-Diffusion Model for Bitcoin Options Pricing and Hedging," Mathematics, MDPI, vol. 9(20), pages 1-24, October.
- Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
- Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2020. "Do Bitcoin and other cryptocurrencies jump together?," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 396-409.
- Tsang, Kwok Ping & Yang, Zichao, 2021. "The market for bitcoin transactions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
- Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
- Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2019. "On long memory effects in the volatility measure of Cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 95-100.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
- Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
- Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020.
"Understanding Cryptocurrencies,"
Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
- Härdle, Wolfgang Karl & Harvey, Campbell R. & Reule, Raphael C. G., 2018. "Understanding Cryptocurrencies," IRTG 1792 Discussion Papers 2018-044, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2021. "Inflation and cryptocurrencies revisited: A time-scale analysis," Economics Letters, Elsevier, vol. 206(C).
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
- Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
- Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
- Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
- Zheng-Zheng Li & Ran Tao & Chi-Wei Su & Oana-Ramona Lobonţ, 2019. "Does Bitcoin bubble burst?," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 91-105, January.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Jeffrey Chu & Saralees Nadarajah & Stephen Chan, 2015. "Statistical Analysis of the Exchange Rate of Bitcoin," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-27, July.
- Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
- Mauro Bernardi & Leopoldo Catania, 2018. "The model confidence set package for R," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 8(2), pages 144-158.
- Jang, Jiwook & Oh, Rosy, 2021. "A review on Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes," Annals of Actuarial Science, Cambridge University Press, vol. 15(3), pages 623-644, November.
- Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
- Giuseppe Buccheri & Giacomo Bormetti & Fulvio Corsi & Fabrizio Lillo, 2021. "A Score-Driven Conditional Correlation Model for Noisy and Asynchronous Data: An Application to High-Frequency Covariance Dynamics," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 920-936, October.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
- Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
- Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
- Mauro Bernardi & Leopoldo Catania, 2019. "Switching generalized autoregressive score copula models with application to systemic risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(1), pages 43-65, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- José Parra-Moyano & Daniel Partida & Moritz Gessl & Somnath Mazumdar, 2024. "Analyzing swings in Bitcoin returns: a comparative study of the LPPL and sentiment-informed random forest models," Digital Finance, Springer, vol. 6(3), pages 427-439, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
- Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
- Dean Fantazzini & Stephan Zimin, 2020.
"A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies,"
Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
- Fantazzini, Dean & Zimin, Stephan, 2019. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," MPRA Paper 95988, University Library of Munich, Germany.
- Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Robert Mudida & Nuruddeen Abu, 2021.
"Market efficiency and volatility persistence of cryptocurrency during pre‐ and post‐crash periods of Bitcoin: Evidence based on fractional integration,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1318-1335, January.
- Yaya, OlaOluwa S & Ogbonna, Ephraim A & Mudida, Robert, 2019. "Market Efficiency and Volatility Persistence of Cryptocurrency during Pre- and Post-Crash Periods of Bitcoin: Evidence based on Fractional Integration," MPRA Paper 91450, University Library of Munich, Germany.
- Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
- Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
- Katsiampa, Paraskevi & Corbet, Shaen & Lucey, Brian, 2019. "Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis," Finance Research Letters, Elsevier, vol. 29(C), pages 68-74.
- Fung, Kennard & Jeong, Jiin & Pereira, Javier, 2022. "More to cryptos than bitcoin: A GARCH modelling of heterogeneous cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PA).
- Figà-Talamanca, Gianna & Focardi, Sergio & Patacca, Marco, 2021. "Regime switches and commonalities of the cryptocurrencies asset class," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Huthaifa Alqaralleh & Alaa Adden Abuhommous & Ahmad Alsaraireh, 2020. "Modelling and Forecasting the Volatility of Cryptocurrencies: A Comparison of Nonlinear GARCH-Type Models," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 11(4), pages 346-356, July.
- Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
More about this item
Keywords
Bitcoin; Higher-order moments; Risk management; Generalized autoregressive score;All these keywords.
JEL classification:
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:digfin:v:5:y:2023:i:2:d:10.1007_s42521-022-00072-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.