Modeling time series with zero observations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011.
"A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
- Drew Creal & Siem Jan Koopman & André Lucas, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(4), pages 552-563, October.
- Drew Creal & Siem Jan Koopman & André Lucas, 2010. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Tinbergen Institute Discussion Papers 10-032/2, Tinbergen Institute.
- Tommaso Proietti & Eric Hillebrand, 2017.
"Seasonal changes in central England temperatures,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
- Tommaso Proietti & Eric Hillebrand, 2015. "Seasonal Changes in Central England Temperatures," CREATES Research Papers 2015-28, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti & Eric Hillebrand, 2015. "Seasonal Changes in Central England Temperatures," CEIS Research Paper 347, Tor Vergata University, CEIS, revised 15 Jun 2015.
- Harvey, Andrew & Thiele, Stephen, 2016.
"Testing against changing correlation,"
Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 575-589.
- Andrew Harvey & Stephen Thiele, 2014. "Testing against Changing Correlation," Cambridge Working Papers in Economics 1439, Faculty of Economics, University of Cambridge.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024, January.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, January.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017.
"Volatility Modeling with a Generalized t Distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
- Andrew Harvey & Rutger-Jan Lange, 2015. "Volatility Modeling with a Generalized t-distribution," Cambridge Working Papers in Economics 1517, Faculty of Economics, University of Cambridge.
- Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022.
"Maximum likelihood estimation for score-driven models,"
Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Maximum Likelihood Estimation for Score-Driven Models," Tinbergen Institute Discussion Papers 14-029/III, Tinbergen Institute, revised 23 Oct 2017.
- Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004.
"A comparison of financial duration models via density forecasts,"
International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
- BAUWENS , Luc & GIOT, Pierre & GRAMMIG, Joachim & VEREDAS, David, 2000. "A comparison of financial duration models via density forecasts," LIDAM Discussion Papers CORE 2000060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & GIOT, Pierre & GRAMMIG, Joachim & VEREDAS, David, 2004. "A comparison of financial duration models via density forecasts," LIDAM Reprints CORE 1746, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2004. "A comparison of financial duration models via density forecast," ULB Institutional Repository 2013/136218, ULB -- Universite Libre de Bruxelles.
- Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2000. "A Comparison of Financial Duration Models via Density Forecasts," Econometric Society World Congress 2000 Contributed Papers 0810, Econometric Society.
- Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014.
"Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes,"
Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
- Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2013. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121, December.
- Hautsch, Nikolaus & Malec, Peter & Schienle, Melanie, 2010. "Capturing the zero: A new class of zero-augmented distributions and multiplicative error processes," SFB 649 Discussion Papers 2010-055, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hautsch, Nikolaus & Malec, Peter & Schienle, Melanie, 2010. "Capturing the zero: A new class of zero-augmented distributions and multiplicative error processes," CFS Working Paper Series 2010/19, Center for Financial Studies (CFS).
- Hautsch, Nikolaus & Malec, Peter & Schienle, Melanie, 2011. "Capturing the zero: A new class of zero-augmented distributions and multiplicative error processes," CFS Working Paper Series 2011/25, Center for Financial Studies (CFS).
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Ito, R., 2016. "Spline-DCS for Forecasting Trade Volume in High-Frequency Finance," Cambridge Working Papers in Economics 1606, Faculty of Economics, University of Cambridge.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Harvey, Andrew & Ito, Ryoko, 2020. "Modeling time series when some observations are zero," Journal of Econometrics, Elsevier, vol. 214(1), pages 33-45.
- Harvey, A., 2021. "Score-driven time series models," Cambridge Working Papers in Economics 2133, Faculty of Economics, University of Cambridge.
- Catania, Leopoldo & Grassi, Stefano, 2022. "Forecasting cryptocurrency volatility," International Journal of Forecasting, Elsevier, vol. 38(3), pages 878-894.
- Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017.
"Volatility Modeling with a Generalized t Distribution,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
- Andrew Harvey & Rutger-Jan Lange, 2015. "Volatility Modeling with a Generalized t-distribution," Cambridge Working Papers in Economics 1517, Faculty of Economics, University of Cambridge.
- Giuseppe Buccheri & Stefano Grassi & Giorgio Vocalelli, 2021. "Estimating Risk in Illiquid Markets: a Model of Market Friction with Stochastic Volatility," CEIS Research Paper 506, Tor Vergata University, CEIS, revised 08 Nov 2021.
- Ayala Astrid & Blazsek Szabolcs & Escribano Alvaro, 2023. "Anticipating extreme losses using score-driven shape filters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(4), pages 449-484, September.
- Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
- Harvey, Andrew & Palumbo, Dario, 2023.
"Score-driven models for realized volatility,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Harvey, A. & Palumbo, D., 2019. "Score-Driven Models for Realized Volatility," Cambridge Working Papers in Economics 1950, Faculty of Economics, University of Cambridge.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016.
"Spillover dynamics for systemic risk measurement using spatial financial time series models,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2014. "Spillover dynamics for systemic risk measurement using spatial financial time series models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100632, Verein für Socialpolitik / German Economic Association.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas & Julia Schaumburg, 2014. "Spillover Dynamics for Systemic Risk Measurement using Spatial Financial Time Series Models," Tinbergen Institute Discussion Papers 14-107/III, Tinbergen Institute.
- Ito, Ryoko, 2013. "Modeling Dynamic Diurnal Patterns in High-Frequency Financial Data," Cambridge Working Papers in Economics 1315, Faculty of Economics, University of Cambridge.
- Leopoldo Catania & Alessandra Luati & Pierluigi Vallarino, 2021. "Economic vulnerability is state dependent," CREATES Research Papers 2021-09, Department of Economics and Business Economics, Aarhus University.
- Astrid Ayala & Szabolcs Blazsek, 2018. "Equity market neutral hedge funds and the stock market: an application of score-driven copula models," Applied Economics, Taylor & Francis Journals, vol. 50(37), pages 4005-4023, August.
- Pawel Janus & André Lucas & Anne Opschoor & Dick J.C. van Dijk, 2014. "New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels," Tinbergen Institute Discussion Papers 14-073/IV, Tinbergen Institute, revised 19 Aug 2015.
- Rutger-Jan Lange & Bram van Os & Dick van Dijk, 2022. "Implicit score-driven filters for time-varying parameter models," Tinbergen Institute Discussion Papers 22-066/III, Tinbergen Institute, revised 21 Nov 2024.
- David Ardia & Kris Boudt & Leopoldo Catania, 2016. "Generalized Autoregressive Score Models in R: The GAS Package," Papers 1609.02354, arXiv.org.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017.
"Time-Varying Transition Probabilities for Markov Regime Switching Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Time Varying Transition Probabilities for Markov Regime Switching Models," Tinbergen Institute Discussion Papers 14-072/III, Tinbergen Institute.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Maximum Likelihood Estimation for correctly Specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties," Tinbergen Institute Discussion Papers 14-074/III, Tinbergen Institute.
- Francisco Blasques & Siem Jan Koopman & André Lucas, 2014. "Information Theoretic Optimality of Observation Driven Time Series Models," Tinbergen Institute Discussion Papers 14-046/III, Tinbergen Institute.
More about this item
Keywords
Censored distributions; dynamic conditional score model; generalized beta distribution; rainfall; seasonality; zero aug- mented model.;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2017-02-26 (Econometrics)
- NEP-ETS-2017-02-26 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:1701. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.