IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v38y2017i2p175-190.html
   My bibliography  Save this article

Volatility Modeling with a Generalized t Distribution

Author

Listed:
  • Tata Subba Rao
  • Granville Tunnicliffe Wilson
  • Andrew Harvey
  • Rutger-Jan Lange

Abstract

Beta-t-EGARCH models in which the dynamics of the logarithm of scale are driven by the conditional score are known to exhibit attractive theoretical properties for the t-distribution and general error distribution (GED). The generalized-t includes both as special cases. We derive the information matrix for the generalized-t and show that, when parameterized with the inverse of the tail index, it remains positive definite as the tail index goes to infinity and the distribution becomes a GED. Hence it is possible to construct Lagrange multiplier tests of the null hypothesis of light tails against the alternative of fat tails. Analytic expressions may be obtained for the unconditional moments in the EGARCH model and the information matrix for the dynamic parameters obtained. The distribution may be extended by allowing for skewness and asymmetry in the shape parameters and the asymptotic theory for the associated EGARCH models may be correspondingly extended. For positive variables, the GB2 distribution may be parameterized so that it goes to the generalised gamma in the limit as the tail index goes to infinity. Again dynamic volatility may be introduced and properties of the model obtained. Overall the approach offers a unified, flexible, robust and practical treatment of dynamic scale.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
  • Handle: RePEc:bla:jtsera:v:38:y:2017:i:2:p:175-190
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12224
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    2. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    3. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    4. Jensen, Søren Tolver & Rahbek, Anders, 2004. "Asymptotic Inference For Nonstationary Garch," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1203-1226, December.
    5. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    6. Giulio Bottazzi & Angelo Secchi, 2011. "A new class of asymmetric exponential power densities with applications to economics and finance," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(4), pages 991-1030, August.
    7. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    8. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    9. Andrew Harvey & Rutger-Jan Lange, 2015. "Modeling the Interactions between Volatility and Returns," Cambridge Working Papers in Economics 1518, Faculty of Economics, University of Cambridge.
    10. Sean Holly & Ivan Petrella & Emiliano Santoro, 2013. "Aggregate fluctuations and the cross-sectional dynamics of firm growth," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(2), pages 459-479, February.
    11. Kai-Li Wang & Christopher Fawson & Christopher B. Barrett & James B. McDonald, 2001. "A flexible parametric GARCH model with an application to exchange rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(4), pages 521-536.
    12. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    13. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
    14. Brazauskas, Vytaras, 2002. "Fisher information matrix for the Feller-Pareto distribution," Statistics & Probability Letters, Elsevier, vol. 59(2), pages 159-167, September.
    15. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    16. Arslan, Olcay, 2004. "Family of multivariate generalized t distributions," Journal of Multivariate Analysis, Elsevier, vol. 89(2), pages 329-337, May.
    17. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    18. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    19. Bickel, David R., 2002. "Robust estimators of the mode and skewness of continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 39(2), pages 153-163, April.
    20. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michele Caivano & Andrew Harvey, 2014. "Time-series models with an EGB2 conditional distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 558-571, November.
    2. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    3. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    4. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    5. Andrew Harvey & Rutger-Jan Lange, 2015. "Modeling the Interactions between Volatility and Returns," Cambridge Working Papers in Economics 1518, Faculty of Economics, University of Cambridge.
    6. M. Caivano & A. Harvey, 2013. "Two EGARCH models and one fat tail," Cambridge Working Papers in Economics 1326, Faculty of Economics, University of Cambridge.
    7. Victor Korolev, 2023. "Analytic and Asymptotic Properties of the Generalized Student and Generalized Lomax Distributions," Mathematics, MDPI, vol. 11(13), pages 1-27, June.
    8. Ayala Astrid & Blazsek Szabolcs & Escribano Alvaro, 2023. "Anticipating extreme losses using score-driven shape filters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(4), pages 449-484, September.
    9. Stephen Thiele, 2020. "Modeling the conditional distribution of financial returns with asymmetric tails," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 46-60, January.
    10. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    11. Hafner, Christian M. & Wang, Linqi, 2023. "A dynamic conditional score model for the log correlation matrix," Journal of Econometrics, Elsevier, vol. 237(2).
    12. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models," Papers 1610.02863, arXiv.org.
    13. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    14. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    15. Andrew Harvey & Ryoko Ito, 2017. "Modeling time series with zero observations," Economics Papers 2017-W01, Economics Group, Nuffield College, University of Oxford.
    16. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    17. Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
    18. F Blasques & P Gorgi & S J Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    19. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    20. Ryoko Ito, 2016. "Asymptotic Theory for Beta-t-GARCH," Cambridge Working Papers in Economics 1607, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:38:y:2017:i:2:p:175-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.