IDEAS home Printed from https://ideas.repec.org/f/c/pan527.html
   My authors  Follow this author

Tomohiro Ando

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.

    Cited by:

    1. Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Papers No 06/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Yongxia Zhang & Qi Wang & Maozai Tian, 2022. "Smoothed Quantile Regression with Factor-Augmented Regularized Variable Selection for High Correlated Data," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    3. Ando, Tomohiro & Bai, Jushan & Li, Kunpeng, 2022. "Bayesian and maximum likelihood analysis of large-scale panel choice models with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 230(1), pages 20-38.
    4. Chen, Liang & Ramos Ramirez, Andrey David, 2023. "Heterogeneous Predictive Association of CO2 with Global Warming," UC3M Working papers. Economics 36451, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Nicola Borri & Denis Chetverikov & Yukun Liu & Aleh Tsyvinski, 2024. "One Factor to Bind the Cross-Section of Returns," Cowles Foundation Discussion Papers 2386, Cowles Foundation for Research in Economics, Yale University.
    6. Xiao Huang, 2023. "Composite Quantile Factor Models," Papers 2308.02450, arXiv.org.
    7. Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Papers 2012.03182, arXiv.org, revised Nov 2021.
    8. Liang Chen & Juan Jose Dolado & Jesus Gonzalo, 2019. "Quantile Factor Models," Papers 1911.02173, arXiv.org, revised Sep 2020.
    9. Xie, Qichang & Ma, Di & Raza, Muhammad Yousaf & Tang, Songlin & Bai, Dingchuan, 2023. "Toward carbon peaking and neutralization: The heterogeneous stochastic convergence of CO2 emissions and the role of digital inclusive finance," Energy Economics, Elsevier, vol. 125(C).
    10. Ling Peng & Dong Han, 2021. "The Convergence Rate of High-Dimensional Sample Quantiles for φ -Mixing Observation Sequences," Mathematics, MDPI, vol. 9(6), pages 1-8, March.
    11. Boudt, Kris & Heyndels, Ewoud, 2024. "Robust interactive fixed effects," Econometrics and Statistics, Elsevier, vol. 29(C), pages 206-223.
    12. Chen, Liang & Ramos Ramirez, Andrey David, 2013. "Revisiting Granger Causality of CO2 on Global Warming: a Quantile Factor Approach," DES - Working Papers. Statistics and Econometrics. WS 35531, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
    14. Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Paper 2023/9, Norges Bank.
    15. Anthoulla Phella, 2020. "Forecasting With Factor-Augmented Quantile Autoregressions: A Model Averaging Approach," Papers 2010.12263, arXiv.org.
    16. Daan Opschoor & Dick van Dijk & Philip Hans Franses, 2021. "Heterogeneity in Manufacturing Growth Risk," Tinbergen Institute Discussion Papers 21-036/III, Tinbergen Institute.
    17. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Estimation of Heterogeneous Treatment Effects Using Quantile Regression with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 13/22, Monash University, Department of Econometrics and Business Statistics.
    18. Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
    19. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    20. Yu Sheng & V. Eldon Ball & Kenneth Erickson & Carlos San Juan Mesonada, 2022. "Cross-country agricultural TFP convergence and capital deepening: evidence for induced innovation from 17 OECD countries," Journal of Productivity Analysis, Springer, vol. 58(2), pages 185-202, December.
    21. Jia Chen Author-Name-First: Jia & Yongcheol Shin & Chaowen Zheng, 2023. "Dynamic Quantile Panel Data Models with Interactive Effects," Economics Discussion Papers em-dp2023-06, Department of Economics, University of Reading.
    22. Shang, Jin & Hamori, Shigeyuki, 2024. "Quantile time-frequency connectedness analysis between crude oil, gold, financial markets, and macroeconomic indicators: Evidence from the US and EU," Energy Economics, Elsevier, vol. 132(C).
    23. Zhu, Huiming & Li, Shuang & Huang, Zishan, 2023. "Frequency domain quantile dependence and connectedness between crude oil and exchange rates: Evidence from oil-importing and exporting countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 1-30.
    24. Dimitris Korobilis & Maximilian Schröder, 2023. "Probabilistic Quantile Factor Analysis," Working Papers No 05/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    25. Anthoulla Phella, 2020. "Consistent Specification Test of the Quantile Autoregression," Papers 2010.03898, arXiv.org, revised Jan 2024.
    26. Dimitris Korobilis & Maximilian Schroder, 2022. "Probabilistic Quantile Factor Analysis," Papers 2212.10301, arXiv.org, revised Aug 2024.
    27. Jozef Barunik & Matej Nevrla, 2022. "Common Idiosyncratic Quantile Risk," Papers 2208.14267, arXiv.org, revised Nov 2024.
    28. Baruník, Jozef & Čech, František, 2021. "Measurement of common risks in tails: A panel quantile regression model for financial returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    29. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.

  2. Ando, Tomohiro & Bai, Jushan, 2014. "A simple new test for slope homogeneity in panel data models with interactive effects," MPRA Paper 60795, University Library of Munich, Germany.

    Cited by:

    1. Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
    2. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    3. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    4. Olatunji A. Shobande & Simplice A. Asongu, 2021. "Financial Development, Human Capital Development and Climate Change in East and Southern Africa," Research Africa Network Working Papers 21/042, Research Africa Network (RAN).
    5. Yu, Haijing & Shen, Shaowei & Han, Lei & Ouyang, Jian, 2024. "Spatiotemporal heterogeneities in the impact of the digital economy on carbon emission transfers in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    6. Mohitosh Kejriwal & Haiqing Zhao, 2019. "Revisiting the Democracy-Growth Nexus:New Evidence from a Dynamic Common Correlated Effects Approach," Purdue University Economics Working Papers 1317, Purdue University, Department of Economics.
    7. Mohitosh Kejriwal & Xiaoxiao Li & Evan Totty, 2020. "Multidimensional skills and the returns to schooling: Evidence from an interactive fixed‐effects approach and a linked survey‐administrative data set," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 548-566, August.
    8. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A semiparametric approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Mar 2023.
    9. Mohitosh Kejriwal & Xiaoxiao Li & Evan Totty, 2019. "Multidemsional Skills and Returns to Schooling: Evidence from an Interactive Fixed Effects Aproach and a Linked Survey-Administrative Dataset," Purdue University Economics Working Papers 1316, Purdue University, Department of Economics.
    10. Fernandez, Julian, 2020. "Exchange Rate Uncertainty and the Interest Rate Parity," MPRA Paper 116010, University Library of Munich, Germany, revised 2022.
    11. Yiren Wang & Peter C. B. Phillips & Liangjun Su, 2023. "Panel Data Models with Time-Varying Latent Group Structures," Cowles Foundation Discussion Papers 2364, Cowles Foundation for Research in Economics, Yale University.
    12. Feng Xu & Zekai He, 2020. "Testing slope homogeneity in panel data models with a multifactor error structure," Statistical Papers, Springer, vol. 61(1), pages 201-224, February.
    13. Mehmet Akyol & Emrullah Mete, 2021. "The Relationship Between Labor Productivity, Exports, and Foreign Direct Investment for Transition Economies," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 8(2), pages 155-171, July.

  3. Bai, Jushan & Ando, Tomohiro, 2013. "Panel data models with grouped factor structure under unknown group membership," MPRA Paper 52782, University Library of Munich, Germany.

    Cited by:

    1. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 556-604.
    2. Liqian Cai & Arnab Bhattacharjee & Roger Calantone & Taps Maiti, 2019. "Variable Selection with Spatially Autoregressive Errors: A Generalized Moments LASSO Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 146-200, September.
    3. Simone Bertoli & Jesús Fernández-Huertas Moraga, 2015. "Visa Policies, Networks and the Cliff at the Border," CERDI Working papers halshs-01099863, HAL.
    4. Andreas Dzemski & Ryo Okui, 2024. "Confidence set for group membership," Quantitative Economics, Econometric Society, vol. 15(2), pages 245-277, May.
    5. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    6. Boyuan Zhang, 2022. "Incorporating Prior Knowledge of Latent Group Structure in Panel Data Models," Papers 2211.16714, arXiv.org, revised Oct 2023.
    7. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    8. Liu, Yanbo & Phillips, Peter C. B. & Yu, Jun, 2022. "A Panel Clustering Approach to Analyzing Bubble Behavior," Economics and Statistics Working Papers 1-2022, Singapore Management University, School of Economics.
    9. Leng, Xuan & Chen, Heng & Wang, Wendun, 2023. "Multi-dimensional latent group structures with heterogeneous distributions," Journal of Econometrics, Elsevier, vol. 233(1), pages 1-21.
    10. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    11. Wang, Wuyi & Su, Liangjun, 2017. "Identifying Latent Group Structures in Nonlinear Panels," Economics and Statistics Working Papers 19-2017, Singapore Management University, School of Economics.
    12. Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org, revised Aug 2018.
    13. Denis Chetverikov & Elena Manresa, 2022. "Spectral and post-spectral estimators for grouped panel data models," Papers 2212.13324, arXiv.org, revised Dec 2022.
    14. Xiang, Jingjie & Li, Li, 2022. "Monetary policy uncertainty, debt financing cost and real economic activities: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 1025-1044.
    15. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," SEEDS Working Papers 0521, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2021.
    16. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    17. Yang, Xinfeng & Yan, Xiaodong & Huang, Jian, 2019. "High-dimensional integrative analysis with homogeneity and sparsity recovery," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    18. Bonhomme, Stéphane & Lamadon, Thibaut & Manresa, Elena, 2017. "Discretizing Unobserved Heterogeneity," Working Paper Series 2017:21, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    19. Iris Kesternich & Bettina Siflinger & James P. Smith & Franziska Valder, 2022. "Relationship Stability: Evidence from Labor and Marriage Markets," CEBI working paper series 22-20, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    20. Nibbering, D. & Paap, R., 2019. "Panel Forecasting with Asymmetric Grouping," Econometric Institute Research Papers EI-2019-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    21. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    22. André Lucas & Julia Schaumburg & Bernd Schwaab, 2020. "Dynamic clustering of multivariate panel data," Tinbergen Institute Discussion Papers 20-009/III, Tinbergen Institute.
    23. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    24. Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2021. "Nonstationary panel models with latent group structures and cross-section dependence," Journal of Econometrics, Elsevier, vol. 221(1), pages 198-222.
    25. Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.
    26. Claudia Pigini & Alessandro Pionati & Francesco Valentini, 2023. "Specification testing with grouped fixed effects," Papers 2310.01950, arXiv.org.
    27. Max Cytrynbaum, 2020. "Blocked Clusterwise Regression," Papers 2001.11130, arXiv.org.
    28. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    29. Jiangtao Duan & Wei Gao & Hao Qu & Hon Keung Tony, 2019. "Subspace Clustering for Panel Data with Interactive Effects," Papers 1909.09928, arXiv.org, revised Feb 2021.
    30. Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
    31. Fernandez, Julian, 2020. "Exchange Rate Uncertainty and the Interest Rate Parity," MPRA Paper 116010, University Library of Munich, Germany, revised 2022.
    32. Boudt, Kris & Heyndels, Ewoud, 2024. "Robust interactive fixed effects," Econometrics and Statistics, Elsevier, vol. 29(C), pages 206-223.
    33. Blasques, Francisco & Hoogerkamp, Meindert Heres & Koopman, Siem Jan & van de Werve, Ilka, 2021. "Dynamic factor models with clustered loadings: Forecasting education flows using unemployment data," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1426-1441.
    34. Katerina Chrysikou & George Kapetanios, 2024. "Heterogeneous Grouping Structures in Panel Data," Papers 2407.19509, arXiv.org.
    35. Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
    36. Boyuan Zhang, 2020. "Forecasting with Bayesian Grouped Random Effects in Panel Data," Papers 2007.02435, arXiv.org, revised Oct 2020.
    37. Yiren Wang & Peter C. B. Phillips & Liangjun Su, 2023. "Panel Data Models with Time-Varying Latent Group Structures," Cowles Foundation Discussion Papers 2364, Cowles Foundation for Research in Economics, Yale University.
    38. Jorge A. Rivero, 2023. "Unobserved Grouped Heteroskedasticity and Fixed Effects," Papers 2310.14068, arXiv.org, revised Oct 2023.
    39. Miao, Ke & Li, Kunpeng & Su, Liangjun, 2020. "Panel threshold models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 219(1), pages 137-170.
    40. Carlos Vladimir Rodríguez-Caballero, 2016. "Panel Data with Cross-Sectional Dependence Characterized by a Multi-Level Factor Structure," CREATES Research Papers 2016-31, Department of Economics and Business Economics, Aarhus University.
    41. Yang, Shuquan & Ling, Nengxiang, 2023. "Robust projected principal component analysis for large-dimensional semiparametric factor modeling," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    42. Sun, Yan & Wan, Chuang & Zhang, Wenyang & Zhong, Wei, 2024. "A Multi-Kink quantile regression model with common structure for panel data analysis," Journal of Econometrics, Elsevier, vol. 239(2).
    43. Camacho, Maximo & Lopez-Buenache, German, 2023. "Factor models for large and incomplete data sets with unknown group structure," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1205-1220.
    44. Amparo Soler-Domínguez & Juan Carlos Matallín-Sáez & Diego Víctor de Mingo-López & Emili Tortosa-Ausina, 2020. "Social responsible mutual funds and lowcarbon economy," Working Papers 2020/15, Economics Department, Universitat Jaume I, Castellón (Spain).
    45. Yu Hao & Hiroyuki Kasahara, 2022. "Testing the Number of Components in Finite Mixture Normal Regression Model with Panel Data," Papers 2210.02824, arXiv.org, revised Jun 2023.
    46. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    47. Wanbo Lu & Guanglin Huang & Kris Boudt, 2024. "Estimation of Non-Gaussian Factors Using Higher-order Multi-cumulants in Weak Factor Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 24/1085, Ghent University, Faculty of Economics and Business Administration.
    48. Kathleen T. Li, 2024. "Frontiers: A Simple Forward Difference-in-Differences Method," Marketing Science, INFORMS, vol. 43(2), pages 267-279, March.
    49. Millimet, Daniel L. & Bellemare, Marc, 2023. "Fixed Effects and Causal Inference," IZA Discussion Papers 16202, Institute of Labor Economics (IZA).
    50. Amparo Soler‐Domínguez & Juan Carlos Matallín‐Sáez & Diego Víctor de Mingo‐López & Emili Tortosa‐Ausina, 2021. "Looking for sustainable development: Socially responsible mutual funds and the low‐carbon economy," Business Strategy and the Environment, Wiley Blackwell, vol. 30(4), pages 1751-1766, May.
    51. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    52. Dzemski, Andreas & Okui, Ryo, 2018. "Confidence Set for Group Membership," Working Papers in Economics 727, University of Gothenburg, Department of Economics.
    53. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    54. Su, Liangjun & Wang, Wuyi & Xu, Xingbai, 2023. "Identifying latent group structures in spatial dynamic panels," Journal of Econometrics, Elsevier, vol. 235(2), pages 1955-1980.
    55. Babii, Andrii & Chen, Xi & Ghysels, Eric, 2019. "Commercial and Residential Mortgage Defaults: Spatial Dependence with Frailty," Journal of Econometrics, Elsevier, vol. 212(1), pages 47-77.
    56. Chu, Ba, 2017. "Composite Quasi-Maximum Likelihood Estimation of Dynamic Panels with Group-Specific Heterogeneity and Spatially Dependent Errors," MPRA Paper 79709, University Library of Munich, Germany.
    57. Gu, Jiaying & Volgushev, Stanislav, 2019. "Panel data quantile regression with grouped fixed effects," Journal of Econometrics, Elsevier, vol. 213(1), pages 68-91.
    58. Guðmundsson, Guðmundur Stefán & Brownlees, Christian, 2021. "Detecting groups in large vector autoregressions," Journal of Econometrics, Elsevier, vol. 225(1), pages 2-26.
    59. Matthew Harding & Carlos Lamarche & Chris Muris, 2022. "Estimation of a Factor-Augmented Linear Model with Applications Using Student Achievement Data," Papers 2203.03051, arXiv.org.
    60. Camacho, Maximo & Caro, Angela & Peña, Daniel, 2023. "What drives industrial energy prices?," Economic Modelling, Elsevier, vol. 120(C).

  4. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

    Cited by:

    1. Bai, Jushan & Ando, Tomohiro, 2013. "Panel data models with grouped factor structure under unknown group membership," MPRA Paper 52782, University Library of Munich, Germany.

  5. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.

    Cited by:

    1. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Extended Phillips Curve Models with non-filtered Data," Koç University-TUSIAD Economic Research Forum Working Papers 1321, Koc University-TUSIAD Economic Research Forum.
    2. Nalan Baştürk & Stefano Grassi & Lennart Hoogerheide & Herman K. Van Dijk, 2016. "Parallelization Experience with Four Canonical Econometric Models Using ParMitISEM," Econometrics, MDPI, vol. 4(1), pages 1-20, March.
    3. Baştürk, N. & Grassi, S. & Hoogerheide, L. & Opschoor, A. & van Dijk, H.K., 2015. "The R package MitISEM : efficient and robust simulation procedures for Bayesian inference," Research Memorandum 011, Maastricht University, Graduate School of Business and Economics (GSBE).
    4. Nalan Basturk & Cem Cakmakli & Pinar Ceyhan & Herman K. van Dijk, 2013. "Posterior-Predictive Evidence on US Inflation using Phillips Curve Models with Non-Filtered Time Series," Tinbergen Institute Discussion Papers 13-011/III, Tinbergen Institute.
    5. Martin Halla & Martina Zweimüller, 2014. "Parental Response to Early Human Capital Shocks: Evidence from the Chernobyl Accident," NRN working papers 2014-01, The Austrian Center for Labor Economics and the Analysis of the Welfare State, Johannes Kepler University Linz, Austria.
    6. Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2017. "Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank," Tinbergen Institute Discussion Papers 17-058/III, Tinbergen Institute.
    7. Frühwirth-Schnatter, Sylvia & Halla, Martin & Posekany, Alexandra & Pruckner, Gerald J. & Schober, Thomas, 2014. "The Quantity and Quality of Children: A Semi-Parametric Bayesian IV Approach," IZA Discussion Papers 8024, Institute of Labor Economics (IZA).
    8. Nalan Baştürk & Cem Çakmakli & S. Pinar Ceyhan & Herman K. Van Dijk, 2014. "Posterior‐Predictive Evidence On Us Inflation Using Extended New Keynesian Phillips Curve Models With Non‐Filtered Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1164-1182, November.
    9. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    10. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    11. Pedro Saramago & Karl Claxton & Nicky J. Welton & Marta Soares, 2020. "Bayesian econometric modelling of observational data for cost‐effectiveness analysis: establishing the value of negative pressure wound therapy in the healing of open surgical wounds," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1575-1593, October.
    12. Geweke, John & Durham, Garland, 2019. "Sequentially adaptive Bayesian learning algorithms for inference and optimization," Journal of Econometrics, Elsevier, vol. 210(1), pages 4-25.
    13. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.

  6. Arnold Zellner & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2011. "Instrumental Variables, Errors in Variables, and Simultaneous Equations Models: Applicability and Limitations of Direct Monte Carlo," Tinbergen Institute Discussion Papers 11-137/4, Tinbergen Institute.

    Cited by:

    1. Cogley, Timothy & Startz, Richard, 2012. "Bayesian IV: the normal case with multiple endogenous variables," University of California at Santa Barbara, Economics Working Paper Series qt40v0x246, Department of Economics, UC Santa Barbara.

Articles

  1. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.

    Cited by:

    1. Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Papers 2012.03182, arXiv.org, revised Nov 2021.
    2. Tomohiro Ando & Jushan Bai & Lina Lu & Cindy M. Vojtech, 2024. "Scenario-based Quantile Connectedness of the U.S. Interbank Liquidity Risk Network," Supervisory Research and Analysis Working Papers SRA 24-02, Federal Reserve Bank of Boston.
    3. Chao Yang & Yajun Zhao, 2023. "Supply chains and risk premia in Chinese stock market: A sorted‐portfolio approach," International Studies of Economics, John Wiley & Sons, vol. 18(3), pages 277-305, September.

  2. Tomohiro Ando & Jushan Bai, 2023. "Large-Scale Generalized Linear Models for Longitudinal Data with Grouped Patterns of Unobserved Heterogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(3), pages 983-994, July.

    Cited by:

    1. Jean-Baptiste Hasse & Christelle Lecourt & Souhila Siagh, 2024. "Setting up a Sovereign Wealth Fund to Reduce Currency Crises," AMSE Working Papers 2417, Aix-Marseille School of Economics, France.

  3. Ando, Tomohiro & Bai, Jushan & Li, Kunpeng, 2022. "Bayesian and maximum likelihood analysis of large-scale panel choice models with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 230(1), pages 20-38.

    Cited by:

    1. Liang Chen & Minyuan Zhang, 2023. "Common Correlated Effects Estimation of Nonlinear Panel Data Models," Papers 2304.13199, arXiv.org.
    2. Yu, Lu & Gu, Jiaying & Volgushev, Stanislav, 2024. "Spectral clustering with variance information for group structure estimation in panel data," Journal of Econometrics, Elsevier, vol. 241(1).

  4. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.

    Cited by:

    1. Yousaf, Imran & Zeitun, Rami & Ali, Shoaib & Palma, Alessia, 2024. "Impact of tokenization on financial investments: Exploring connectedness through the case of transport and travel/tourism sectors," Finance Research Letters, Elsevier, vol. 62(PB).
    2. Armah, Mohammed & Amewu, Godfred, 2024. "Quantile dependence and asymmetric connectedness between global financial market stress and REIT returns: Evidence from the COVID-19 pandemic," The Journal of Economic Asymmetries, Elsevier, vol. 29(C).
    3. Rehman, Mobeen Ur & Nautiyal, Neeraj & Vo, Xuan Vinh & Ghardallou, Wafa & Kang, Sang Hoon, 2023. "Is the impact of oil shocks more pronounced during extreme market conditions?," Resources Policy, Elsevier, vol. 85(PA).
    4. Gök, Remzi & Bouri, Elie & Gemici, Eray, 2023. "Volatility spillovers between sovereign CDS and futures markets in various volatility states: Evidence from an emerging economy around the pandemic," Research in International Business and Finance, Elsevier, vol. 66(C).
    5. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    6. Zhou, Dong-hai & Liu, Xiao-xing, 2024. "Does systemic risk in the fund markets predict future economic downturns?," International Review of Financial Analysis, Elsevier, vol. 92(C).
    7. Tarchella, Salma & Khalfaoui, Rabeh & Hammoudeh, Shawkat, 2024. "The safe haven, hedging, and diversification properties of oil, gold, and cryptocurrency for the G7 equity markets: Evidence from the pre- and post-COVID-19 periods," Research in International Business and Finance, Elsevier, vol. 67(PB).
    8. S. Boubaker & S. Karim & M.A. Naeem & G.D. Sharma, 2023. "Financial Markets, Energy Shocks, and Extreme Volatility Spillovers," Post-Print hal-04435469, HAL.
    9. Bai, Lan & Wei, Yu & Zhang, Jiahao & Wang, Yizhi & Lucey, Brian M., 2023. "Diversification effects of China's carbon neutral bond on renewable energy stock markets: A minimum connectedness portfolio approach," Energy Economics, Elsevier, vol. 123(C).
    10. Ali, Shoaib & Al-Nassar, Nassar S. & Naveed, Muhammad, 2024. "Bridging the gap: Uncovering static and dynamic relationships between digital assets and BRICS equity markets," Global Finance Journal, Elsevier, vol. 60(C).
    11. Abdullah, Mohammad & Abakah, Emmanuel Joel Aikins & Wali Ullah, G M & Tiwari, Aviral Kumar & Khan, Isma, 2023. "Tail risk contagion across electricity markets in crisis periods," Energy Economics, Elsevier, vol. 127(PB).
    12. Tingguo Zheng & Hongyin Zhang & Shiqi Ye, 2024. "Monetary Policies on Green Financial Markets: Evidence from a Multi-Moment Connectedness Network," Papers 2405.02575, arXiv.org, revised Oct 2024.
    13. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    14. Umar, Zaghum & Bossman, Ahmed, 2023. "Quantile connectedness between oil price shocks and exchange rates," Resources Policy, Elsevier, vol. 83(C).
    15. Bazán-Palomino, Walter, 2023. "The increased interest in Bitcoin and the immediate and long-term impact of Bitcoin volatility on global stock markets," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1080-1095.
    16. Long, Shaobo & Li, Zixuan, 2023. "Dynamic spillover effects of global financial stress: Evidence from the quantile VAR network," International Review of Financial Analysis, Elsevier, vol. 90(C).
    17. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Interconnected networks: Measuring extreme risk connectedness between China’s financial sector and real estate sector," International Review of Financial Analysis, Elsevier, vol. 90(C).
    18. Cunado, Juncal & Chatziantoniou, Ioannis & Gabauer, David & de Gracia, Fernando Perez & Hardik, Marfatia, 2023. "Dynamic spillovers across precious metals and oil realized volatilities: Evidence from quantile extended joint connectedness measures," Journal of Commodity Markets, Elsevier, vol. 30(C).
    19. Zhongzheng, Wang, 2023. "Extreme risk transmission mechanism between oil, green bonds and new energy vehicles," Innovation and Green Development, Elsevier, vol. 2(3).
    20. Shahzad, Syed Jawad Hussain & Hasan, Mudassar & Caporin, Massimiliano, 2023. "Asymmetric and time-frequency based networks of currency markets," Finance Research Letters, Elsevier, vol. 55(PB).
    21. Gao, Yang & Zhou, Yueyi & Zhao, Longfeng, 2024. "Quantile interdependence and network connectedness between China's green financial and energy markets," Economic Analysis and Policy, Elsevier, vol. 81(C), pages 1148-1177.
    22. Michail Nerantzidis & Nikolaos Stoupos & Panayiotis Tzeremes, 2024. "Realized Volatility Spillover Connectedness among the Leading European Currencies after the End of the Sovereign-Debt Crisis: A QVAR Approach," JRFM, MDPI, vol. 17(8), pages 1-17, August.
    23. Jareño, Francisco & Yousaf, Imran, 2023. "Artificial intelligence-based tokens: Fresh evidence of connectedness with artificial intelligence-based equities," International Review of Financial Analysis, Elsevier, vol. 89(C).
    24. Sheikh, Umaid A. & Asadi, Mehrad & Roubaud, David & Hammoudeh, Shawkat, 2024. "Global uncertainties and Australian financial markets: Quantile time-frequency connectedness," International Review of Financial Analysis, Elsevier, vol. 92(C).
    25. Chen, Yongfei & Wei, Yu & Bai, Lan & Zhang, Jiahao & Wang, Zhuo, 2023. "Connectedness and hedging effects among China's nonferrous metal, crude oil and green bond markets: An extreme perspective," Finance Research Letters, Elsevier, vol. 58(PA).
    26. Chishti, Muhammad Zubair & Dogan, Eyup & Zaman, Umer, 2023. "Effects of the circular economy, environmental policy, energy transition, and geopolitical risk on sustainable electricity generation," Utilities Policy, Elsevier, vol. 82(C).
    27. Abakah, Emmanuel Joel Aikins & Abdullah, Mohammad & Yousaf, Imran & Kumar Tiwari, Aviral & Li, Yanshuang, 2024. "Economic sanctions sentiment and global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    28. Lau, Chi Keung & Soliman, Alaa M. & Albasu, Joseph & Gozgor, Giray, 2023. "Dependence structures among geopolitical risks, energy prices, and carbon emissions prices," Resources Policy, Elsevier, vol. 83(C).
    29. Jun Long & Xianghui Yuan & Liwei Jin & Chencheng Zhao, 2024. "Connectedness and risk spillover in China's commodity futures sectors," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(5), pages 784-802, May.
    30. Zhao, Mingguo & Park, Hail, 2024. "Quantile time-frequency spillovers among green bonds, cryptocurrencies, and conventional financial markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    31. Le, Trung H. & Pham, Linh & Do, Hung X., 2023. "Price risk transmissions in the water-energy-food nexus: Impacts of climate risks and portfolio implications," Energy Economics, Elsevier, vol. 124(C).
    32. Cui, Jinxin & Maghyereh, Aktham, 2024. "Unveiling interconnectedness: Exploring higher-order moments among energy, precious metals, industrial metals, and agricultural commodities in the context of geopolitical risks and systemic stress," Journal of Commodity Markets, Elsevier, vol. 33(C).
    33. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Multilayer networks in the frequency domain: Measuring extreme risk connectedness of Chinese financial institutions," Research in International Business and Finance, Elsevier, vol. 65(C).
    34. Yousaf, Imran & Pham, Linh & Goodell, John W., 2023. "Interconnectedness between healthcare tokens and healthcare stocks: Evidence from a quantile VAR approach," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 271-283.
    35. Joo, Young C. & Park, Sung Y., 2023. "Quantile connectedness between cryptocurrency and commodity futures," Finance Research Letters, Elsevier, vol. 58(PC).
    36. Roy Chowdhury, S. & Gupta, Kirti & Tzeremes, Panayiotis, 2023. "US housing prices and the transmission mechanism of connectedness," Finance Research Letters, Elsevier, vol. 58(PD).
    37. Hung Xuan Do & Rabindra Nepal & Son Duy Pham & Tooraj Jamasb, 2023. "Electricity Market Crisis in Europe and Cross Border Price Effects: A Quantile Return Connectedness Analysis," CAMA Working Papers 2023-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    38. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2024. "Tail connectedness between artificial intelligence tokens, artificial intelligence ETFs, and traditional asset classes," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    39. Duc Hong Vo & Minh Phuoc-Bao Tran, 2023. "Do geopolitical risks from the economic powers dominate world gold return? Evidence from the quantile connectedness approach," Economic Change and Restructuring, Springer, vol. 56(6), pages 4661-4688, December.
    40. Mensi, Walid & Alomari, Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Extreme quantile spillovers and connectedness between oil and Chinese sector markets: A portfolio hedging analysis," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    41. Nyakurukwa, Kingstone & Seetharam, Yudhvir, 2023. "Quantile and asymmetric return connectedness among BRICS stock markets," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    42. Cevik, Emrah Ismail & Caliskan Terzioglu, Hande & Kilic, Yunus & Bugan, Mehmet Fatih & Dibooglu, Sel, 2024. "Interconnectedness and systemic risk: Evidence from global stock markets," Research in International Business and Finance, Elsevier, vol. 69(C).
    43. Ren, Yi-Shuai & Klein, Tony & Jiang, Yong & Ma, Chao-Qun & Yang, Xiao-Guang, 2024. "Dynamic spillovers among global oil shocks, economic policy uncertainty, and inflation expectation uncertainty under extreme shocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    44. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2024. "Quantifying spillovers and connectedness among commodities and cryptocurrencies: Evidence from a Quantile-VAR analysis," Journal of Commodity Markets, Elsevier, vol. 33(C).
    45. Li, Yueshan & Chen, Shoudong & Sensoy, Ahmet & Wang, Lu, 2024. "Over-expected shocks and financial market security: Evidence from China's markets," Research in International Business and Finance, Elsevier, vol. 68(C).
    46. Ghosh, Bikramaditya & Gubareva, Mariya & Ghosh, Anandita & Paparas, Dimitrios & Vo, Xuan Vinh, 2024. "Food, energy, and water nexus: A study on interconnectedness and trade-offs," Energy Economics, Elsevier, vol. 133(C).
    47. Sinem Derindere Köseoğlu, 2023. "Understanding Systemic Risk Dynamics and Economic Growth: Evidence from the Turkish Banking System," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    48. Jonas Krampe & Luca Margaritella, 2024. "Global bank network connectedness revisited: What is common, idiosyncratic and when?," Papers 2402.02482, arXiv.org.
    49. Lu, Chengwu & Zafar, Muhammad Wasif & Cevik, Emrah I. & Destek, Mehmet Akif & Bugan, Mehmet Fatih, 2023. "Time and quantile domain connectedness between the geopolitical risk of China and precious metals markets," Resources Policy, Elsevier, vol. 85(PA).
    50. Aharon, David Y. & Kizys, Renatas & Umar, Zaghum & Zaremba, Adam, 2023. "Did David win a battle or the war against Goliath? Dynamic return and volatility connectedness between the GameStop stock and the high short interest indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    51. Yousaf, Imran & Hunjra, Ahmed Imran & Alshater, Muneer M. & Bouri, Elie & Li, Yanshuang, 2023. "Multidimensional connectedness among the volatility of global financial markets around the Russian-Ukrainian conflict," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    52. Ling, Aifan & Li, Jinlong & Zhang, Yugui, 2023. "Can firms with higher ESG ratings bear higher bank systemic tail risk spillover?—Evidence from Chinese A-share market," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    53. Urom, Christian, 2023. "Time–frequency dependence and connectedness between financial technology and green assets," International Economics, Elsevier, vol. 175(C), pages 139-157.
    54. Su, Xianfang & Zhao, Yachao, 2023. "What has the strongest connectedness with clean energy? Technology, substitutes, or raw materials," Energy Economics, Elsevier, vol. 128(C).
    55. Zhao, Wandi & Gao, Yang, 2024. "Dynamic patterns and the latent community structure of sectoral volatility and jump risk contagion," Emerging Markets Review, Elsevier, vol. 59(C).
    56. Ke, Rui & Shen, Anni & Yin, Man & Tan, Changchun, 2024. "The cross-sector risk contagion among Chinese financial institutions: Evidence from the extreme volatility spillover perspective," Finance Research Letters, Elsevier, vol. 63(C).
    57. Dimitris Korobilis & Maximilian Schröder, 2023. "Monitoring multicountry macroeconomic risk," Working Paper 2023/9, Norges Bank.
    58. Shi, Huai-Long & Chen, Huayi, 2024. "Understanding co-movements based on heterogeneous information associations," International Review of Financial Analysis, Elsevier, vol. 94(C).
    59. Ahmed El Oubani, 2024. "Investor sentiment and sustainable investment: evidence from North African stock markets," Future Business Journal, Springer, vol. 10(1), pages 1-20, December.
    60. Asadi, Mehrad & Tiwari, Aviral Kumar & Gholami, Samad & Ghasemi, Hamid Reza & Roubaud, David, 2023. "Understanding interconnections among steel, coal, iron ore, and financial assets in the US and China using an advanced methodology," International Review of Financial Analysis, Elsevier, vol. 89(C).
    61. Lei, Heng & Xue, Minggao & Ye, Jing, 2024. "The nexus between ReFi, carbon, fossil energy, and clean energy assets: Quantile time–frequency connectedness and portfolio implications," Energy Economics, Elsevier, vol. 132(C).
    62. Zhang, Xu & Naeem, Muhammad Abubakr & Du, Yuting & Rauf, Abdul, 2024. "Examining the bidirectional ripple effects in the NFT markets: Risky center or hedging center?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    63. Li, Yueshan & Chen, Shoudong & Goodell, John W. & Yue, Dianmin & Liu, Xutang, 2023. "Sectoral spillovers and systemic risks: Evidence from China," Finance Research Letters, Elsevier, vol. 55(PB).
    64. Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
    65. Patel, Ritesh & Gubareva, Mariya & Chishti, Muhammad Zubair & Teplova, Tamara, 2024. "Connectedness between healthcare cryptocurrencies and major asset classes: Implications for hedging and investments strategies," International Review of Financial Analysis, Elsevier, vol. 93(C).
    66. Zhang, He & Gong, Zhenting & Yang, Yunglieh & Chen, Fan, 2023. "Dynamic connectedness between China green bond, carbon market and traditional financial markets: Evidence from quantile connectedness approach," Finance Research Letters, Elsevier, vol. 58(PC).
    67. Yousaf, Imran & Pham, Linh & Goodell, John W., 2024. "Dynamic spillovers between leading cryptocurrencies and derivatives tokens: Insights from a quantile VAR approach," International Review of Financial Analysis, Elsevier, vol. 94(C).
    68. Wen, Fenghua & Wang, Kangsheng & Zeng, Aiqing, 2024. "Return spillover across the carbon market and financial markets: A quantile-based approach," Research in International Business and Finance, Elsevier, vol. 69(C).
    69. Lang, Chunlin & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg), 2024. "Tail risk connectedness in G7 stock markets: Understanding the impact of COVID-19 and related variants," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    70. Guangxi Cao & Fei Xie, 2024. "Extreme risk spillovers across energy and carbon markets: Evidence from the quantile extended joint connectedness approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2155-2175, April.
    71. Ghosh, Bikramaditya & Pham, Linh & Gubareva, Mariya & Teplova, Tamara, 2023. "Energy transition metals and global sentiment: Evidence from extreme quantiles," Resources Policy, Elsevier, vol. 86(PA).
    72. Rao, Amar & Kumar, Satish & Gupta, Prashant & Dash, Saumya Ranjan, 2024. "Quantifying the impact of interest rate volatility on Asian energy companies: A comparative study of fossil and renewable sectors," Energy Economics, Elsevier, vol. 133(C).
    73. Lu, Xunfa & Huang, Nan & Mo, Jianlei, 2024. "Time-varying causalities from the COVID-19 media coverage to the dynamic spillovers among the cryptocurrency, the clean energy, and the crude oil," Energy Economics, Elsevier, vol. 132(C).
    74. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Quantile spillovers and connectedness analysis between oil and African stock markets," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 60-83.
    75. Urom, Christian & Ndubuisi, Gideon, 2023. "Do geopolitical risks and global market factors influence the dynamic dependence among regional sustainable investments and major commodities?," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 94-111.
    76. Malik, Farooq & Umar, Zaghum, 2024. "Quantile connectedness of oil price shocks with socially responsible investments," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    77. Jiang, Wei & Chen, Yunfei, 2024. "Impact of Russia-Ukraine conflict on the time-frequency and quantile connectedness between energy, metal and agricultural markets," Resources Policy, Elsevier, vol. 88(C).
    78. Greenwood-Nimmo, Matthew & Nguyen, Viet Hoang & Shin, Yongcheol, 2023. "What is mine is yours: Sovereign risk transmission during the European debt crisis," Journal of Financial Stability, Elsevier, vol. 65(C).
    79. Huthaifa Sameeh Alqaralleh, 2023. "The extreme spillover from climate policy uncertainty to the Chinese sector stock market: wavelet time-varying approach," Letters in Spatial and Resource Sciences, Springer, vol. 16(1), pages 1-17, December.
    80. Chen, Yan & Wang, Gang-Jin & Zhu, You & Xie, Chi & Uddin, Gazi Salah, 2023. "Quantile connectedness and the determinants between FinTech and traditional financial institutions: Evidence from China," Global Finance Journal, Elsevier, vol. 58(C).
    81. Shang, Jin & Hamori, Shigeyuki, 2024. "Quantile time-frequency connectedness analysis between crude oil, gold, financial markets, and macroeconomic indicators: Evidence from the US and EU," Energy Economics, Elsevier, vol. 132(C).
    82. Elsayed, Ahmed H. & Ahmed, Habib & Husam Helmi, Mohamad, 2023. "Determinants of financial stability and risk transmission in dual financial system: Evidence from the COVID pandemic," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    83. Ghaemi Asl, Mahdi & Raheem, Ibrahim D. & Rashidi, Muhammad Mahdi, 2023. "Do stochastic risks flow between industrial and precious metals, Islamic stocks, green bonds, green stocks, clean investments, major foreign exchange rates, and Bitcoin?," Resources Policy, Elsevier, vol. 86(PA).
    84. Chuliá, Helena & Klein, Tony & Muñoz Mendoza, Jorge A. & Uribe, Jorge M., 2024. "Vulnerability of European electricity markets: A quantile connectedness approach," Energy Policy, Elsevier, vol. 184(C).
    85. Gaies, Brahim & Chaâbane, Najeh & Bouzouita, Nesrine, 2024. "Navigating the storm: Time-frequency quantile dependence and non-linear causality between crypto-currency market volatility and financial instability," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 43-70.
    86. Siddique, Md. Abubakar & Nobanee, Haitham & Hasan, Md. Bokhtiar & Uddin, Gazi Salah & Nahiduzzaman, Md., 2024. "Is investing in green assets costlier? Green vs. non-green financial assets," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 1460-1481.
    87. Zhu, Huiming & Li, Shuang & Huang, Zishan, 2023. "Frequency domain quantile dependence and connectedness between crude oil and exchange rates: Evidence from oil-importing and exporting countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 90(C), pages 1-30.
    88. Nong, Huifu & Liu, Hongxiao, 2023. "Measuring the frequency and quantile connectedness between policy categories and global oil price," Resources Policy, Elsevier, vol. 83(C).
    89. Liu, Min & Liu, Hong-Fei & Lee, Chien-Chiang, 2024. "An empirical study on the response of the energy market to the shock from the artificial intelligence industry," Energy, Elsevier, vol. 288(C).
    90. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    91. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    92. Si Mohammed, Kamel & Tedeschi, Marco & Mallek, Sabrine & Tarczyńska-Łuniewska, Małgorzata & Zhang, Anqi, 2023. "Realized semi variance quantile connectedness between oil prices and stock market: Spillover from Russian-Ukraine clash," Resources Policy, Elsevier, vol. 85(PA).
    93. Ali, Shoaib & Naveed, Muhammad & Hanif, Hasan & Gubareva, Mariya, 2024. "The resilience of Shariah-compliant investments: Probing the static and dynamic connectedness between gold-backed cryptocurrencies and GCC equity markets," International Review of Financial Analysis, Elsevier, vol. 91(C).
    94. El Khoury, Rim & Alshater, Muneer M. & Li, Yanshuang & Xiong, Xiong, 2024. "Quantile time-frequency connectedness among G7 stock markets and clean energy markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 71-90.
    95. Chen, Bin-xia & Sun, Yan-lin, 2023. "Extreme risk contagion between international crude oil and China's energy-intensive sectors: New evidence from quantile Granger causality and spillover methods," Energy, Elsevier, vol. 285(C).
    96. Zeng, Hongjun & Abedin, Mohammad Zoynul & Zhou, Xiangjing & Lu, Ran, 2024. "Measuring the extreme linkages and time-frequency co-movements among artificial intelligence and clean energy indices," International Review of Financial Analysis, Elsevier, vol. 92(C).
    97. Atasoy, Burak Sencer & Özkan, İbrahim & Erden, Lütfi, 2024. "The determinants of systemic risk contagion," Economic Modelling, Elsevier, vol. 130(C).
    98. Yousaf, Imran & Assaf, Ata & Demir, Ender, 2024. "Relationship between real estate tokens and other asset classes: Evidence from quantile connectedness approach," Research in International Business and Finance, Elsevier, vol. 69(C).
    99. Zhou, Dong-hai & Liu, Xiao-xing, 2023. "Do world stock markets “jump” together? A measure of high-frequency volatility risk spillover networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    100. Lin, Xudong & Meng, Yiqun & Zhu, Hao, 2023. "How connected is the crypto market risk to investor sentiment?," Finance Research Letters, Elsevier, vol. 56(C).
    101. Ozcelebi, Oguzhan & Kang, Sang Hoon, 2024. "Extreme connectedness and network across financial assets and commodity futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    102. Ali, Shoaib & Umar, Muhammad & Gubareva, Mariya & Vo, Xuan Vinh, 2024. "Extreme connectedness between NFTs and US equity market: A sectoral analysis," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 299-315.
    103. Syed Jawad Hussain Shahzad & Román Ferrer & Elie Bouri, 2023. "Systemic Risk in the Global Energy Sector: Structure, Determinants and Portfolio Management Implications," The Energy Journal, , vol. 44(6), pages 211-243, November.
    104. Al-Fayoumi, Nedal & Bouri, Elie & Abuzayed, Bana, 2023. "Decomposed oil price shocks and GCC stock market sector returns and volatility," Energy Economics, Elsevier, vol. 126(C).
    105. Yousaf, Imran & Abrar, Afsheen & Yarovaya, Larisa, 2023. "Decentralized and centralized exchanges: Which digital tokens pose a greater contagion risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 89(C).
    106. Mohammed, Kamel Si & Obeid, Hassan & Oueslati, Karim & Kaabia, Olfa, 2023. "Investor sentiments, economic policy uncertainty, US interest rates, and financial assets: Examining their interdependence over time," Finance Research Letters, Elsevier, vol. 57(C).
    107. Mensi, Walid & Selmi, Refk & Al-Kharusi, Sami & Belghouthi, Houssem Eddine & Kang, Sang Hoon, 2024. "Connectedness between green bonds, conventional bonds, oil, heating oil, natural gas, and petrol: new evidence during bear and bull market scenarios," Resources Policy, Elsevier, vol. 91(C).
    108. Lu, Xunfa & Huang, Nan & Mo, Jianlei & Ye, Zhitao, 2023. "Dynamics of the return and volatility connectedness among green finance markets during the COVID-19 pandemic," Energy Economics, Elsevier, vol. 125(C).
    109. Bonaccolto, Giovanni & Caporin, Massimiliano & Iacopini, Matteo, 2024. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Comment," Energy Economics, Elsevier, vol. 132(C).
    110. Kai‐Hua Wang & Zu‐Shan Wang & Hong‐Wen Liu & Xin Li, 2023. "Economic policy uncertainty and geopolitical risk: evidence from China and Southeast Asia," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(2), pages 96-118, November.
    111. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    112. Fousekis, Panos, 2024. "Price Links Among Qualitatively Differentiated Meats: Evidence from The UK Wholesale Beef Market," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 12(3), July.
    113. Bouri, Elie & Quinn, Barry & Sheenan, Lisa & Tang, Yayan, 2024. "Investigating extreme linkage topology in the aerospace and defence industry," International Review of Financial Analysis, Elsevier, vol. 93(C).
    114. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.
    115. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    116. Evrim Mandaci, Pınar & Azimli, Asil & Mandaci, Nazif, 2023. "The impact of geopolitical risks on connectedness among natural resource commodities: A quantile vector autoregressive approach," Resources Policy, Elsevier, vol. 85(PA).
    117. Abricha, Amal & Ben Amar, Amine & Bellalah, Makram, 2024. "Commodity futures markets under stress and stress-free periods: Further insights from a quantile connectedness approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 229-246.
    118. Yousaf, Imran & Jareño, Francisco & Martínez-Serna, María-Isabel, 2023. "Extreme spillovers between insurance tokens and insurance stocks: Evidence from the quantile connectedness approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).

  5. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    See citations under working paper version above.
  6. Ando, Tomohiro & Sueishi, Naoya, 2019. "Regularization parameter selection for penalized empirical likelihood estimator," Economics Letters, Elsevier, vol. 178(C), pages 1-4.

    Cited by:

    1. Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.

  7. Tomohiro Ando, 2018. "Merchant selection and pricing strategy for a platform firm in the online group buying market," Annals of Operations Research, Springer, vol. 263(1), pages 209-230, April.

    Cited by:

    1. K. Coussement & K. W. Bock & S. Geuens, 2022. "A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer," Annals of Operations Research, Springer, vol. 315(2), pages 671-694, August.
    2. Min Liu & Sajid Anwar, 2023. "Can price discrimination improve the performance of online retail platforms?," Australian Economic Papers, Wiley Blackwell, vol. 62(2), pages 257-271, June.
    3. Liu, Weihua & Yan, Xiaoyu & Wei, Wanying & Xie, Dong, 2019. "Pricing decisions for service platform with provider’s threshold participating quantity, value-added service and matching ability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 410-432.

  8. Tomohiro Ando & Jushan Bai, 2018. "Selecting the regularization parameters in high-dimensional panel data models: Consistency and efficiency," Econometric Reviews, Taylor & Francis Journals, vol. 37(3), pages 183-211, March.

    Cited by:

    1. Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.

  9. Saburo Ohno & Tomohiro Ando, 2018. "Stock return predictability: A factor-augmented predictive regression system with shrinkage method," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 29-60, January.

    Cited by:

    1. Yingying Xu & Jichang Zhao, 2022. "Can sentiments on macroeconomic news explain stock returns? Evidence form social network data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2073-2088, April.
    2. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    3. Gloria Gonzalez-Rivera & Esther Ruiz & Javier Vicente, 2018. "Growth in Stress," Working Papers 201805, University of California at Riverside, Department of Economics.
    4. Mahsa Ghorbani & Edwin K P Chong, 2020. "Stock price prediction using principal components," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    5. Mahsa Ghorbani & Edwin K. P. Chong, 2022. "A dimension reduction method for stock-price prediction using multiple predictors," Operational Research, Springer, vol. 22(3), pages 2859-2878, July.

  10. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.

    Cited by:

    1. Riccardo Borghi & Eric Hillebrand & Jakob Mikkelsen & Giovanni Urga, 2018. "The dynamics of factor loadings in the cross-section of returns," CREATES Research Papers 2018-38, Department of Economics and Business Economics, Aarhus University.
    2. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2023. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Papers 2303.13218, arXiv.org.
    3. Guohua Feng & Jiti Gao & Fei Liu & Bin Peng, 2024. "Estimation and Inference for Three-Dimensional Panel Data Models," Papers 2404.08365, arXiv.org, revised Sep 2024.
    4. Camacho, Maximo, 2020. "What do international energy prices have in common after taking into account the key drivers?," DES - Working Papers. Statistics and Econometrics. WS 31647, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak factor models and the analysis of high-dimensional time series," Papers 2407.10653, arXiv.org.
    6. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
    7. Tingting Cheng & Chaohua Dong & Jiti Gao & Oliver Linton, 2022. "GMM Estimation for High-Dimensional Panel Data Models," Monash Econometrics and Business Statistics Working Papers 11/22, Monash University, Department of Econometrics and Business Statistics.
    8. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    9. Ando, Tomohiro & Bai, Jushan & Li, Kunpeng, 2022. "Bayesian and maximum likelihood analysis of large-scale panel choice models with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 230(1), pages 20-38.
    10. Matteo Barigozzi & Christian Brownlees, 2013. "Nets: Network Estimation for Time Series," Working Papers 723, Barcelona School of Economics.
    11. Yoshimasa Uematsu & Takashi Yamagata, 2020. "Inference in Weak Factor Models," ISER Discussion Paper 1080, Institute of Social and Economic Research, Osaka University.
    12. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    13. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    14. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    15. Esther Acquah & Lorenzo Carbonari & Alessio Farcomeni & Giovanni Trovato, 2021. "Institutions and Economic Development: New Measurements and Evidence," Working Paper series 21-15, Rimini Centre for Economic Analysis.
    16. Bin Peng & Liangjun Su & Joakim Westerlund & Yanrong Yang, 2021. "Interactive Effects Panel Data Models with General Factors and Regressors," Papers 2111.11506, arXiv.org.
    17. Denis Chetverikov & Elena Manresa, 2022. "Spectral and post-spectral estimators for grouped panel data models," Papers 2212.13324, arXiv.org, revised Dec 2022.
    18. Arturas Juodis & Yiannis Karavias & Vasilis Sarafidis, 2020. "A Homogeneous Approach to Testing for Granger Non-Causality in Heterogeneous Panels," Monash Econometrics and Business Statistics Working Papers 32/20, Monash University, Department of Econometrics and Business Statistics.
    19. Marcin Jaskowski & Michael McAleer, 2018. "Spurious Cross-Sectional Dependence in Credit Spread Changes," Documentos de Trabajo del ICAE 2018-21, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    20. Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
    21. Fei Liu & Jiti Gao & Yanrong Yang, 2019. "Nonparametric Estimation in Panel Data Models with Heterogeneity and Time Varyingness," Monash Econometrics and Business Statistics Working Papers 24/19, Monash University, Department of Econometrics and Business Statistics.
    22. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    23. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    24. Jie Wei & Yonghui Zhang, 2023. "Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?," Papers 2305.05934, arXiv.org.
    25. Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Papers 2012.03182, arXiv.org, revised Nov 2021.
    26. Yufeng Mao & Bin Peng & Mervyn J Silvapulle & Param Silvapulle & Yanrong Yang, 2021. "Decomposition of Bilateral Trade Flows Using a Three-Dimensional Panel Data Model," Monash Econometrics and Business Statistics Working Papers 7/21, Monash University, Department of Econometrics and Business Statistics.
    27. Yufeng Mao & Bin Peng & Mervyn Silvapulle & Param Silvapulle & Yanrong Yang, 2021. "Decomposition of Bilateral Trade Flows Using a Three-Dimensional Panel Data Model," Papers 2101.06805, arXiv.org.
    28. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A semiparametric approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Mar 2023.
    29. Choi, In & Lin, Rui & Shin, Yongcheol, 2023. "Canonical correlation-based model selection for the multilevel factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
    30. Pedro Galeano & Daniel Peña, 2019. "Data science, big data and statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 289-329, June.
    31. Fernandez, Julian, 2020. "Exchange Rate Uncertainty and the Interest Rate Parity," MPRA Paper 116010, University Library of Munich, Germany, revised 2022.
    32. Boudt, Kris & Heyndels, Ewoud, 2024. "Robust interactive fixed effects," Econometrics and Statistics, Elsevier, vol. 29(C), pages 206-223.
    33. Djogbenou, Antoine & Sufana, Razvan, 2024. "Tests for group-specific heterogeneity in high-dimensional factor models," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    34. Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
    35. Nusrat Jafrin & Muhammad Mehedi Masud & Abu Naser Mohammad Saif & Masnun Mahi & Moriam Khanam, 2021. "A panel data estimation of the determinants of life expectancy in selected SAARC countries," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(4), pages 69-87.
    36. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
    37. Camacho, Maximo & Lopez-Buenache, German, 2023. "Factor models for large and incomplete data sets with unknown group structure," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1205-1220.
    38. Alonso, Andrés M. & Galeano, Pedro & Peña, Daniel, 2020. "A robust procedure to build dynamic factor models with cluster structure," Journal of Econometrics, Elsevier, vol. 216(1), pages 35-52.
    39. Bagnara, Matteo & Goodarzi, Milad, 2023. "Clustering-based sector investing," SAFE Working Paper Series 397, Leibniz Institute for Financial Research SAFE.
    40. Coroneo, Laura & Jackson, Laura E. & Owyang, Michael T., 2020. "International Stock Comovements with Endogenous Clusters," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    41. Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Inference of Grouped Time-Varying Network Vector Autoregression Models," Monash Econometrics and Business Statistics Working Papers 5/23, Monash University, Department of Econometrics and Business Statistics.
    42. Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
    43. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2021. "Trimmed fuzzy clustering of financial time series based on dynamic time warping," Annals of Operations Research, Springer, vol. 299(1), pages 1379-1395, April.
    44. Guohua Feng & Jiti Gao & Bin Peng, 2021. "Productivity Convergence in Manufacturing: A Hierarchical Panel Data Approach," Monash Econometrics and Business Statistics Working Papers 16/21, Monash University, Department of Econometrics and Business Statistics.
    45. Feng, Guohua & Gao, Jiti & Peng, Bin, 2022. "An integrated panel data approach to modelling economic growth," Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
    46. Kaizheng Wang & Xiao Xu & Xun Yu Zhou, 2022. "Variable Clustering via Distributionally Robust Nodewise Regression," Papers 2212.07944, arXiv.org, revised Dec 2022.
    47. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    48. Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Estimation of Grouped Time-Varying Network Vector Autoregression Models," Papers 2303.10117, arXiv.org, revised Mar 2024.
    49. Mahsa Ghorbani & Edwin K. P. Chong, 2022. "A dimension reduction method for stock-price prediction using multiple predictors," Operational Research, Springer, vol. 22(3), pages 2859-2878, July.
    50. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
    51. Antoine A. Djogbenou, 2024. "Identifying oil price shocks with global, developed, and emerging latent real economy activity factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 128-149, January.
    52. Camacho, Maximo & Caro, Angela & Peña, Daniel, 2023. "What drives industrial energy prices?," Economic Modelling, Elsevier, vol. 120(C).

  11. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    See citations under working paper version above.
  12. Ando, Tomohiro & Bai, Jushan, 2015. "A simple new test for slope homogeneity in panel data models with interactive effects," Economics Letters, Elsevier, vol. 136(C), pages 112-117.
    See citations under working paper version above.
  13. Tomohiro Ando & Jushan Bai, 2015. "Asset Pricing with a General Multifactor Structure," Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 556-604.

    Cited by:

    1. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    2. Kutlu, Levent & Sickles, Robin & Tsionas, Mike G., 2019. "Heterogeneous Decision-Making and Market Power," Working Papers 19-008, Rice University, Department of Economics.
    3. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    4. Bertrand Candelon & Jean-Baptiste Hasse & Quentin Lajaunie, 2021. "ESG-Washing in the Mutual Funds Industry? From Information Asymmetry to Regulation," Risks, MDPI, vol. 9(11), pages 1-23, November.
    5. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2015. "Asset Allocation Strategies Based On Penalized Quantile Regression," "Marco Fanno" Working Papers 0199, Dipartimento di Scienze Economiche "Marco Fanno".
    6. Anatolyev, Stanislav & Mikusheva, Anna, 2021. "Limit Theorems For Factor Models," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1034-1074, October.
    7. Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Papers 2210.16042, arXiv.org.
    8. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    9. Eugen Ivanov & Aleksey Min & Franz Ramsauer, 2017. "Copula-Based Factor Models for Multivariate Asset Returns," Econometrics, MDPI, vol. 5(2), pages 1-24, May.
    10. Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.
    11. Sung Hoon Choi & Donggyu Kim, 2023. "Large Global Volatility Matrix Analysis Based on Observation Structural Information," Papers 2305.01464, arXiv.org, revised Feb 2024.
    12. Ando, Tomohiro & Bai, Jushan, 2014. "A simple new test for slope homogeneity in panel data models with interactive effects," MPRA Paper 60795, University Library of Munich, Germany.
    13. Alain-Philippe Fortin & Patrick Gagliardini & Olivier Scaillet, 2023. "Latent Factor Analysis in Short Panels," Papers 2306.14004, arXiv.org, revised May 2024.
    14. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
    15. Carolina Castagnetti & Eduardo Rossi & Lorenzo Trapani, 2014. "A Two-Stage Estimator for Heterogeneous Panel Models with Common Factors," DEM Working Papers Series 066, University of Pavia, Department of Economics and Management.
    16. Sung Hoon Choi & Donggyu Kim, 2022. "Large Volatility Matrix Analysis Using Global and National Factor Models," Papers 2208.12323, arXiv.org, revised Dec 2022.
    17. YAMAMOTO, Yohei & 山本, 庸平, 2015. "Asymptotic Inference for Common Factor Models in the Presence of Jumps," Discussion Papers 2015-05, Graduate School of Economics, Hitotsubashi University.
    18. Isabel Casas & Eva Ferreira & Susan Orbe, 2017. "Time-varying coefficient estimation in SURE models. Application to portfolio management," CREATES Research Papers 2017-33, Department of Economics and Business Economics, Aarhus University.
    19. Levent Kutlu & Robin C. Sickles & Mike G. Tsionas & Emmanuel Mamatzakis, 2022. "Heterogeneous decision-making and market power: an application to Eurozone banks," Empirical Economics, Springer, vol. 63(6), pages 3061-3092, December.
    20. Camacho, Maximo & Lopez-Buenache, German, 2023. "Factor models for large and incomplete data sets with unknown group structure," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1205-1220.
    21. Marco Avarucci & Paolo Zaffaroni, 2019. "Robust Nearly-Efficient Estimation of Large Panels with Factor Structures," Papers 1902.11181, arXiv.org.
    22. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Variance swap payoffs, risk premia and extreme market conditions," Econometrics and Statistics, Elsevier, vol. 13(C), pages 106-124.
    23. Tomohiro Ando & Jushan Bai & Lina Lu & Cindy M. Vojtech, 2024. "Scenario-based Quantile Connectedness of the U.S. Interbank Liquidity Risk Network," Supervisory Research and Analysis Working Papers SRA 24-02, Federal Reserve Bank of Boston.
    24. Yu Sheng & V. Eldon Ball & Kenneth Erickson & Carlos San Juan Mesonada, 2022. "Cross-country agricultural TFP convergence and capital deepening: evidence for induced innovation from 17 OECD countries," Journal of Productivity Analysis, Springer, vol. 58(2), pages 185-202, December.
    25. Kim Dukpa & Kim Yunjung & Bak Yuhyeon, 2017. "Multi-level factor analysis of bond risk premia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-19, December.
    26. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.

  14. Arnold Zellner & Tomohiro Ando & Nalan Baştük & Lennart Hoogerheide & Herman K. van Dijk, 2014. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 3-35, June.
    See citations under working paper version above.
  15. Tomohiro Ando & Ker-Chau Li, 2014. "A Model-Averaging Approach for High-Dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 254-265, March.

    Cited by:

    1. Gao, Yan & Zhang, Xinyu & Wang, Shouyang & Zou, Guohua, 2016. "Model averaging based on leave-subject-out cross-validation," Journal of Econometrics, Elsevier, vol. 192(1), pages 139-151.
    2. Steven Lehrer & Tian Xie, 2020. "The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie Success," Working Paper 1449, Economics Department, Queen's University.
    3. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    4. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    5. Jingwen Tu & Hu Yang & Chaohui Guo & Jing Lv, 2021. "Model averaging marginal regression for high dimensional conditional quantile prediction," Statistical Papers, Springer, vol. 62(6), pages 2661-2689, December.
    6. Jeffrey S. Racine & Qi Li & Dalei Yu & Li Zheng, 2023. "Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1251-1261, October.
    7. Zhang, Xinyu & Liu, Chu-An, 2023. "Model averaging prediction by K-fold cross-validation," Journal of Econometrics, Elsevier, vol. 235(1), pages 280-301.
    8. Liao, Jun & Zou, Guohua & Gao, Yan & Zhang, Xinyu, 2021. "Model averaging prediction for time series models with a diverging number of parameters," Journal of Econometrics, Elsevier, vol. 223(1), pages 190-221.
    9. Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    10. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
    11. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    13. Giuseppe de Luca & Jan Magnus & Franco Peracchi, 2017. "Weighted-Average Least Squares Estimation of Generalized Linear Models," Tinbergen Institute Discussion Papers 17-029/III, Tinbergen Institute.
    14. Zhao, Shangwei & Zhou, Jianhong & Yang, Guangren, 2019. "Averaging estimators for discrete choice by M-fold cross-validation," Economics Letters, Elsevier, vol. 174(C), pages 65-69.
    15. Liao, Jun & Zong, Xianpeng & Zhang, Xinyu & Zou, Guohua, 2019. "Model averaging based on leave-subject-out cross-validation for vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(1), pages 35-60.
    16. Fang, Fang & Li, Jialiang & Xia, Xiaochao, 2022. "Semiparametric model averaging prediction for dichotomous response," Journal of Econometrics, Elsevier, vol. 229(2), pages 219-245.
    17. Zhao, Shangwei & Zhou, Jianhong & Li, Hongjun, 2016. "Model averaging with high-dimensional dependent data," Economics Letters, Elsevier, vol. 148(C), pages 68-71.
    18. Benítez-Peña, Sandra & Carrizosa, Emilio & Guerrero, Vanesa & Jiménez-Gamero, M. Dolores & Martín-Barragán, Belén & Molero-Río, Cristina & Ramírez-Cobo, Pepa & Romero Morales, Dolores & Sillero-Denami, 2021. "On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19," European Journal of Operational Research, Elsevier, vol. 295(2), pages 648-663.
    19. Yongmiao Hong & Tae-Hwy Lee & Yuying Sun & Shouyang Wang & Xinyu Zhang, 2017. "Time-varying Model Averaging," Working Papers 202001, University of California at Riverside, Department of Economics.
    20. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    21. Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Model Averaging of Ultra-High Dimensional Time Series," Discussion Papers 15/18, Department of Economics, University of York.
    22. Fernandez, Julian, 2020. "Exchange Rate Uncertainty and the Interest Rate Parity," MPRA Paper 116010, University Library of Munich, Germany, revised 2022.
    23. Zhao, Shangwei & Xie, Tian & Ai, Xin & Yang, Guangren & Zhang, Xinyu, 2023. "Correcting sample selection bias with model averaging for consumer demand forecasting," Economic Modelling, Elsevier, vol. 123(C).
    24. Cong Li & Qi Li & Jeffrey Racine & DAIQIANG ZHANG, 2017. "Optimal Model Averaging Of Varying Coefficient Models," Department of Economics Working Papers 2017-01, McMaster University.
    25. Seojeong Lee & Youngki Shin, 2021. "Complete subset averaging with many instruments," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 290-314.
    26. De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
    27. Lee, Ji Hyung & Shin, Youngki, 2023. "Complete Subset Averaging For Quantile Regressions," Econometric Theory, Cambridge University Press, vol. 39(1), pages 146-188, February.
    28. Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
    29. Seojeong Lee & Youngki Shin, 2018. "Optimal Estimation with Complete Subsets of Instruments," Department of Economics Working Papers 2018-15, McMaster University.
    30. Xiaochao Xia, 2021. "Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing," Statistical Papers, Springer, vol. 62(6), pages 2885-2905, December.
    31. Yuying Sun & Shaoxin Hong & Zongwu Cai, 2023. "Optimal Local Model Averaging for Divergent-Dimensional Functional-Coefficient Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202309, University of Kansas, Department of Economics, revised Sep 2023.
    32. Baihua He & Yanyan Liu & Guosheng Yin & Yuanshan Wu, 2023. "Model aggregation for doubly divided data with large size and large dimension," Computational Statistics, Springer, vol. 38(1), pages 509-529, March.
    33. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    34. Xinyu Zhang & Dalei Yu & Guohua Zou & Hua Liang, 2016. "Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1775-1790, October.
    35. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    36. Jing Zhou & Gerda Claeskens & Jelena Bradic, 2020. "Detangling robustness in high dimensions: composite versus model-averaged estimation," Papers 2006.07457, arXiv.org.
    37. Cheng, Tzu-Chang F. & Ing, Ching-Kang & Yu, Shu-Hui, 2015. "Toward optimal model averaging in regression models with time series errors," Journal of Econometrics, Elsevier, vol. 189(2), pages 321-334.
    38. Yuan, Chaoxia & Fang, Fang & Ni, Lyu, 2022. "Mallows model averaging with effective model size in fragmentary data prediction," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    39. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    40. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    41. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.
    42. Juming Pan, 2018. "Model Averaging for High-Dimensional Linear Models," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 46-47, April.
    43. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.

  16. Tomohiro Ando & Ruey S. Tsay, 2014. "A Predictive Approach for Selection of Diffusion Index Models," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 68-99, June.

    Cited by:

    1. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

  17. Tomohiro Ando, 2014. "Bayesian corporate bond pricing and credit default swap premium models for deriving default probabilities and recovery rates," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 454-465, March.

    Cited by:

    1. Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit spread approximation and improvement using random forest regression," Post-Print hal-03241566, HAL.
    2. Jonathan Crook & David Edelman, 2014. "Special issue credit risk modelling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 321-322, March.

  18. Paul Kim & Tomohiro Ando, 2012. "Oil and metal price movements and BRIC macro-economy: an empirical analysis," International Journal of Business and Globalisation, Inderscience Enterprises Ltd, vol. 8(2), pages 187-206.

    Cited by:

    1. Kakade, Kshitij Abhay & Mishra, Aswini Kumar, 2021. "The impact of macroeconomic and oil shocks on India’s non-ferrous metal prices: A structural-VAR approach," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 63, pages 30-50.
    2. Tursoy, Turgut & Faisal, Faisal & Berk, Niyazi & Shahbaz, Muhammad, 2018. "How do Stock Prices and Metal Prices Contribute to Economic Activity in Turkey? The Importance of Linear and Non-linear ARDL," MPRA Paper 88899, University Library of Munich, Germany.
    3. Zhu, Pengfei & Tang, Yong & Wei, Yu & Lu, Tuantuan, 2021. "Multidimensional risk spillovers among crude oil, the US and Chinese stock markets: Evidence during the COVID-19 epidemic," Energy, Elsevier, vol. 231(C).

  19. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.

    Cited by:

    1. Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.
    2. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    3. Xun Huang & Fanyong Guo, 2021. "A kernel fuzzy twin SVM model for early warning systems of extreme financial risks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1459-1468, January.
    4. Vortelinos, Dimitrios I., 2016. "Evaluation of the Federal Reserve's financial-crisis timeline," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 350-355.
    5. Zhu, Xiaoqian & Xie, Yongjia & Li, Jianping & Wu, Dengsheng, 2015. "Change point detection for subprime crisis in American banking: From the perspective of risk dependence," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 18-28.

  20. Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 1-24, February.

    Cited by:

    1. Yongxia Zhang & Qi Wang & Maozai Tian, 2022. "Smoothed Quantile Regression with Factor-Augmented Regularized Variable Selection for High Correlated Data," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
    2. Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2020. "Factorisable Multitask Quantile Regression," IRTG 1792 Discussion Papers 2020-004, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    3. Gloria Gonzalez-Rivera & Esther Ruiz & Javier Vicente, 2018. "Growth in Stress," Working Papers 201805, University of California at Riverside, Department of Economics.
    4. Ando, Tomohiro & Bai, Jushan, 2018. "Quantile co-movement in financial markets: A panel quantile model with unobserved heterogeneity," MPRA Paper 88765, University Library of Munich, Germany.
    5. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    6. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2021. "Expecting the unexpected: economic growth under stress," Working Papers 202106, University of California at Riverside, Department of Economics.
    7. Philip Kostov & Julie Le Gallo, 2018. "What role for human capital in the growth process: new evidence from endogenous latent factor panel quantile regressions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(5), pages 501-527, November.
    8. Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2021. ""Vulnerable Funding in the Global Economy"," IREA Working Papers 202106, University of Barcelona, Research Institute of Applied Economics, revised Mar 2021.
    9. Chen Jau-er, 2015. "Factor instrumental variable quantile regression," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 71-92, February.
    10. Chuliá, Helena & Koser, Christoph & Uribe, Jorge M., 2021. "Analyzing the Nonlinear Pricing of Liquidity Risk according to the Market State," Finance Research Letters, Elsevier, vol. 38(C).
    11. Anthoulla Phella, 2020. "Forecasting With Factor-Augmented Quantile Autoregressions: A Model Averaging Approach," Papers 2010.12263, arXiv.org.
    12. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    13. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
    14. Nektarios Aslanidis & Charlotte Christiansen, 2012. "Quantiles of the Realized Stock-Bond Correlation and Links to the Macroeconomy," CREATES Research Papers 2012-34, Department of Economics and Business Economics, Aarhus University.
    15. Siklos, Pierre L., 2012. "No coupling, no decoupling, only mutual inter-dependence: Business cycles in emerging vs. mature economies," BOFIT Discussion Papers 17/2012, Bank of Finland Institute for Emerging Economies (BOFIT).
    16. Harding, Matthew & Lamarche, Carlos, 2012. "Estimating and Testing a Quantile Regression Model with Interactive Effects," IZA Discussion Papers 6802, Institute of Labor Economics (IZA).
    17. Anthoulla Phella, 2020. "Consistent Specification Test of the Quantile Autoregression," Papers 2010.03898, arXiv.org, revised Jan 2024.
    18. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
    19. Uribe, Jorge M. & Chuliá, Helena & Guillén, Montserrat, 2017. "Uncertainty, systemic shocks and the global banking sector: Has the crisis modified their relationship?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 52-68.
    20. C. Davino & R. Romano & D. Vistocco, 2022. "Handling multicollinearity in quantile regression through the use of principal component regression," METRON, Springer;Sapienza Università di Roma, vol. 80(2), pages 153-174, August.
    21. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.

  21. Zellner, Arnold & Ando, Tomohiro, 2010. "Rejoinder," International Journal of Forecasting, Elsevier, vol. 26(2), pages 439-442, April.

    Cited by:

    1. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.

  22. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.

    Cited by:

    1. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.
    2. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    3. F. Louzada & P. H. Ferreira, 2016. "Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2956-2976, December.
    4. Arvind Shrivastava & Kuldeep Kumar & Nitin Kumar, 2018. "Business Distress Prediction Using Bayesian Logistic Model for Indian Firms," Risks, MDPI, vol. 6(4), pages 1-15, October.
    5. Nomen Nescio, 2013. "Nomen Nescio," Tinbergen Institute Discussion Papers 12-095 not issued, Tinbergen Institute.
    6. Nitin Kumar & Arvind Shrivastava & D. P. Singh & Purnendu Kumar, 2018. "Determinants of Financial Stress of Indian Banks," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 19(2), pages 210-228, September.

  23. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.

    Cited by:

    1. Michael D. Bauer, 2018. "Restrictions on Risk Prices in Dynamic Term Structure Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 196-211, April.
    2. Jaeho Kim & Sora Chon, 2020. "Why are Bayesian trend-cycle decompositions of US real GDP so different?," Empirical Economics, Springer, vol. 58(3), pages 1339-1354, March.
    3. Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
    4. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    5. Taras Bodnar & Mathias Lindholm & Vilhelm Niklasson & Erik Thors'en, 2020. "Bayesian Quantile-Based Portfolio Selection," Papers 2012.01819, arXiv.org.
    6. Mircea I. Cosbuc & Cristian Gatu & Ana Colubi & Erricos John Kontoghiorghes, 2017. "A Generalized Singular Value Decomposition Strategy for Estimating the Block Recursive Simultaneous Equations Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 503-515, October.
    7. Wachter, Jessica A. & Warusawitharana, Missaka, 2015. "What is the chance that the equity premium varies over time? Evidence from regressions on the dividend-price ratio," Journal of Econometrics, Elsevier, vol. 186(1), pages 74-93.
    8. Joshua C. C. Chan, 2022. "Asymmetric conjugate priors for large Bayesian VARs," Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
    9. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    10. Wang, Haijian & Zhou, Shaojie & Zhang, Penglong, 2024. "Clean heating and clean air: Evidence from the coal-to-gas program in China," China Economic Review, Elsevier, vol. 85(C).
    11. Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021. "Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation," The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
    12. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    13. Arnold Zellner (posthumously) & Tomohiro Ando & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2012. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Tinbergen Institute Discussion Papers 12-098/III, Tinbergen Institute.
    14. Elvis Cheng Xu, 2019. "Impacts of Urbanisation on Trust: Evidence from a Lab in the Field on a Natural Experiment," Artefactual Field Experiments 00676, The Field Experiments Website.
    15. Manuel González-Astudillo & John M. Roberts, 2022. "When are trend–cycle decompositions of GDP reliable?," Empirical Economics, Springer, vol. 62(5), pages 2417-2460, May.
    16. Donovan, Stuart & de Graaff, Thomas & Grimes, Arthur & de Groot, Henri L.F. & Maré, David C., 2022. "Cities with forking paths? Agglomeration economies in New Zealand 1976–2018," Regional Science and Urban Economics, Elsevier, vol. 95(C).
    17. Pathairat Pastpipatkul & Petchaluck Boonyakunakorn & Kanyaphon Phetsakda, 2020. "The Impact of Thailand’s Openness on Bilateral Trade between Thailand and Japan: Copula-Based Markov Switching Seemingly Unrelated Regression Model," Economies, MDPI, vol. 8(1), pages 1-13, January.
    18. Leonardo Bottolo & Marco Banterle & Sylvia Richardson & Mika Ala‐Korpela & Marjo‐Riitta Järvelin & Alex Lewin, 2021. "A computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional quantitative trait loci discovery," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 886-908, August.
    19. Shun Matsuura & Hiroshi Kurata, 2022. "Optimal estimator under risk matrix in a seemingly unrelated regression model and its generalized least squares expression," Statistical Papers, Springer, vol. 63(1), pages 123-141, February.
    20. Nomen Nescio, 2013. "Nomen Nescio," Tinbergen Institute Discussion Papers 12-095 not issued, Tinbergen Institute.
    21. Linhan Ouyang & Yizhong Ma & Jianxiong Chen & Zhigang Zeng & Yiliu Tu, 2016. "Robust optimisation of Nd: YLF laser beam micro-drilling process using Bayesian probabilistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(21), pages 6644-6659, November.
    22. Abdul Salam & Marco Grzegorczyk, 2023. "Model averaging for sparse seemingly unrelated regression using Bayesian networks among the errors," Computational Statistics, Springer, vol. 38(2), pages 779-808, June.
    23. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    24. Shun Matsuura & Hiroshi Kurata, 2020. "Covariance matrix estimation in a seemingly unrelated regression model under Stein’s loss," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 79-99, March.
    25. Li, Bin & Liang, Yilan & Shahab, Yasir & Gull, Ammar Ali & Ashraf, Naeem, 2022. "Parent-subsidiary dispersion, cost of debt and debt default: Evidence from China," Economic Modelling, Elsevier, vol. 107(C).
    26. Chamberlain Mbah & Kris Peremans & Stefan Van Aelst & Dries F. Benoit, 2019. "Robust Bayesian seemingly unrelated regression model," Computational Statistics, Springer, vol. 34(3), pages 1135-1157, September.
    27. Wang, Min & Yang, Mingan, 2016. "Posterior property of Student-t linear regression model using objective priors," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 23-29.
    28. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    29. Bert de Bruijn & Philip Hans Franses, 2012. "What drives the Quotes of Earnings Forecasters?," Tinbergen Institute Discussion Papers 12-067/4, Tinbergen Institute.
    30. Zhao, Li & Xu, Xingzhong, 2017. "Generalized canonical correlation variables improved estimation in high dimensional seemingly unrelated regression models," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 119-126.

  24. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.

    Cited by:

    1. Briana J. K. Stephenson & Amy H. Herring & Andrew F. Olshan, 2022. "Derivation of maternal dietary patterns accounting for regional heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1957-1977, November.
    2. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    3. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    4. Paul-Christian Bürkner & Jonah Gabry & Aki Vehtari, 2021. "Efficient leave-one-out cross-validation for Bayesian non-factorized normal and Student-t models," Computational Statistics, Springer, vol. 36(2), pages 1243-1261, June.

  25. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.

    Cited by:

    1. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.

  26. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.

    Cited by:

    1. Leung, Dennis & Drton, Mathias, 2016. "Order-invariant prior specification in Bayesian factor analysis," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 60-66.
    2. Jaejoon Lee & Seongil Jo & Jaeyong Lee, 2022. "Robust sparse Bayesian infinite factor models," Computational Statistics, Springer, vol. 37(5), pages 2693-2715, November.
    3. Mohsen Maleki & Darren Wraith, 2019. "Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework," Computational Statistics, Springer, vol. 34(3), pages 1039-1053, September.
    4. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.

  27. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.

    Cited by:

    1. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    2. Kim, Dongwhan & Kang, Kyu Ho, 2021. "Conditional value-at-risk forecasts of an optimal foreign currency portfolio," International Journal of Forecasting, Elsevier, vol. 37(2), pages 838-861.
    3. Tomohiro Ando, 2012. "Bayesian portfolio selection under a multifactor asset return model with predictive model selection," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 14(1/2), pages 77-101.

  28. Tomohiro Ando, 2008. "Measuring the baseline sales and the promotion effect for incense products: a Bayesian state-space modeling approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 763-780, December.

    Cited by:

    1. Epstein, Leonardo D. & Inostroza-Quezada, Ignacio E. & Goodstein, Ronald C. & Choi, S. Chan, 2021. "Dynamic effects of store promotions on purchase conversion: Expanding technology applications with innovative analytics," Journal of Business Research, Elsevier, vol. 128(C), pages 279-289.
    2. Epstein, Leonardo D. & Flores, Arturo A. & Goodstein, Ronald C. & Milberg, Sandra J., 2016. "A new approach to measuring retail promotion effectiveness: A case of store traffic," Journal of Business Research, Elsevier, vol. 69(10), pages 4394-4402.
    3. Taku Moriyama & Masashi Kuwano & Masahito Nakayama, 2024. "A statistical method for estimating piecewise linear sales trends," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(2), pages 436-444, June.

  29. Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.

    Cited by:

    1. José L. Gallizo & Jordi Moreno & Manuel Salvador, 2016. "Banking Efficiency in the Enlarged European Union: Financial Crisis and Convergence," International Finance, Wiley Blackwell, vol. 19(1), pages 66-88, April.
    2. T. Ando & R. S. Tsay, 2009. "‘Model selection for generalized linear models with factor‐augmented predictors’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 243-246, May.
    3. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "A Variant of AIC Using Bayesian Marginal Likelihood," CIRJE F-Series CIRJE-F-971, CIRJE, Faculty of Economics, University of Tokyo.
    4. C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
    5. Oscar V. De la Torre-Torres & Evaristo Galeana-Figueroa & José Álvarez-García, 2021. "A Markov-Switching VSTOXX Trading Algorithm for Enhancing EUR Stock Portfolio Performance," Mathematics, MDPI, vol. 9(9), pages 1-28, May.
    6. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    7. Jincheol Park & Shili Lin, 2017. "A random effect model for reconstruction of spatial chromatin structure," Biometrics, The International Biometric Society, vol. 73(1), pages 52-62, March.
    8. Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
    9. Grassi, Stefano & Ravazzolo, Francesco & Vespignani, Joaquin & Vocalelli, Giorgio, 2023. "Global money supply and energy and non-energy commodity prices: A MS-TV-VAR approach," Working Papers 2023-01, University of Tasmania, Tasmanian School of Business and Economics.
    10. Koji Miyawaki, 2013. "Space-varying Coefficient Simultaneous Autoregressive Models for the Structural Analysis of Residential Water Demand," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 498-518, May.
    11. Brady J Mattsson & Elise F Zipkin & Beth Gardner & Peter J Blank & John R Sauer & J Andrew Royle, 2013. "Explaining Local-Scale Species Distributions: Relative Contributions of Spatial Autocorrelation and Landscape Heterogeneity for an Avian Assemblage," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    12. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2018. "A Variant of AIC Based on the Bayesian Marginal Likelihood," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 60-84, May.
    13. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.
    14. Oscar V. De la Torre-Torres & Francisco Venegas-Martínez & Mᵃ Isabel Martínez-Torre-Enciso, 2021. "Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models," Mathematics, MDPI, vol. 9(2), pages 1-22, January.
    15. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    16. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    17. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    18. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    19. Nandram Balgobin, 2016. "Bayesian Predictive Inference of a Proportion Under a Twofold Small-Area Model," Journal of Official Statistics, Sciendo, vol. 32(1), pages 187-208, March.
    20. Filidor Vilca & Caio L. N. Azevedo & N. Balakrishnan, 2017. "Bayesian inference for sinh-normal/independent nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2052-2074, August.
    21. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    22. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    23. Toda, Motomu & Doi, Kazuki & Ishihara, Masae I. & Azuma, Wakana A. & Yokozawa, Masayuki, 2020. "A Bayesian inversion framework to evaluate parameter and predictive inference of a simple soil respiration model in a cool-temperate forest in western Japan," Ecological Modelling, Elsevier, vol. 418(C).
    24. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    25. Michael T. Owyang & Hannah Shell & Daniel Soques, 2022. "The Evolution of Regional Beveridge Curves," Working Papers 2022-037, Federal Reserve Bank of St. Louis.
    26. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    27. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
    28. Tomohiro Ando, 2012. "Bayesian portfolio selection under a multifactor asset return model with predictive model selection," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 14(1/2), pages 77-101.
    29. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.

  30. Sadanori Konishi, 2004. "Bayesian information criteria and smoothing parameter selection in radial basis function networks," Biometrika, Biometrika Trust, vol. 91(1), pages 27-43, March.

    Cited by:

    1. Ando, Tomohiro, 2009. "Bayesian inference for the hazard term structure with functional predictors using Bayesian predictive information criteria," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1925-1939, April.
    2. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    3. Matsui, Hidetoshi, 2020. "Quadratic regression for functional response models," Econometrics and Statistics, Elsevier, vol. 13(C), pages 125-136.
    4. Duchwan Ryu & Devrim Bilgili & Önder Ergönül & Faming Liang & Nader Ebrahimi, 2018. "A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 153-170, March.
    5. Fujii, Toru & Konishi, Sadanori, 2006. "Nonlinear regression modeling via regularized wavelets and smoothing parameter selection," Journal of Multivariate Analysis, Elsevier, vol. 97(9), pages 2023-2033, October.
    6. Tomohiro Ando & Sadanori Konishi, 2009. "Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 331-353, June.
    7. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    8. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
    9. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    10. Hidetoshi Matsui & Takamitsu Araki & Sadanori Konishi, 2011. "Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 227-243, July.
    11. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    12. M. Rincón & M. Ruiz-Medina, 2012. "Wavelet-RKHS-based functional statistical classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 201-217, October.
    13. Masao Ueki & Kaoru Fueda, 2010. "Optimal tuning parameter estimation in maximum penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 413-438, June.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.