A Bayesian hierarchical model for spatial extremes with multiple durations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2015.09.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.
- Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2012.
"Efficient estimation and particle filter for max‐stable processes,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 33(1), pages 61-80, January.
- Tsuyoshi Kunihama & Yasuhiro Omori & Zhengjun Zhang, 2011. "Efficient estimation and particle filter for max-stable processes," CIRJE F-Series CIRJE-F-791, CIRJE, Faculty of Economics, University of Tokyo.
- Nakajima, Jouchi & Kunihama, Tsuyoshi & Omori, Yasuhiro & Frühwirth-Schnatter, Sylvia, 2012.
"Generalized extreme value distribution with time-dependence using the AR and MA models in state space form,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3241-3259.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori & Sylvia Fruhwirth-Schnatter, 2009. "Generalized extreme value distribution with time-dependence using the AR and MA models in state space form," CIRJE F-Series CIRJE-F-689, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori & Sylvia Fruwirth-Scnatter, 2009. "Generalized Extreme Value Distribution with Time-Dependence Using the AR and MA Models in State Space Form," IMES Discussion Paper Series 09-E-32, Institute for Monetary and Economic Studies, Bank of Japan.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori & Sylvia Fruhwirth-Schnatter, 2011. "Generalized Extreme Value Distribution with Time-Dependence Using the AR and MA Models in State Space Form," CIRJE F-Series CIRJE-F-782, CIRJE, Faculty of Economics, University of Tokyo.
- Robert J. Erhardt & Richard L. Smith, 2014. "Weather Derivative Risk Measures for Extreme Events," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(3), pages 379-393, July.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
- Cooley, Daniel & Nychka, Douglas & Naveau, Philippe, 2007. "Bayesian Spatial Modeling of Extreme Precipitation Return Levels," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 824-840, September.
- Jennifer L. Wadsworth & Jonathan A. Tawn, 2014. "Efficient inference for spatial extreme value processes associated to log-Gaussian random functions," Biometrika, Biometrika Trust, vol. 101(1), pages 1-15.
- Erhardt, Robert J. & Smith, Richard L., 2012. "Approximate Bayesian computing for spatial extremes," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1468-1481.
- Martin Schlather, 2003. "A dependence measure for multivariate and spatial extreme values: Properties and inference," Biometrika, Biometrika Trust, vol. 90(1), pages 139-156, March.
- Marc G. Genton & Yanyuan Ma & Huiyan Sang, 2011. "On the likelihood function of Gaussian max-stable processes," Biometrika, Biometrika Trust, vol. 98(2), pages 481-488.
- Richard A. Davis & Claudia Klüppelberg & Christina Steinkohl, 2013. "Statistical inference for max-stable processes in space and time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(5), pages 791-819, November.
- R. Huser & A. C. Davison, 2013. "Composite likelihood estimation for the Brown--Resnick process," Biometrika, Biometrika Trust, vol. 100(2), pages 511-518.
- Padoan, S. A. & Ribatet, M. & Sisson, S. A., 2010. "Likelihood-Based Inference for Max-Stable Processes," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 263-277.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
- Amanda M. Y. Chu & Thomas W. C. Chan & Mike K. P. So & Wing-Keung Wong, 2021. "Dynamic Network Analysis of COVID-19 with a Latent Pandemic Space Model," IJERPH, MDPI, vol. 18(6), pages 1-22, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
- John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016.
"An M-estimator of spatial tail dependence,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Other publications TiSEM 2d5c1a3b-a5f6-4329-8df2-f, Tilburg University, School of Economics and Management.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2016. "An M-estimator of spatial tail dependence," LIDAM Reprints ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Discussion Paper 2014-021, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Alexis Bienvenüe & Christian Y. Robert, 2017. "Likelihood Inference for Multivariate Extreme Value Distributions Whose Spectral Vectors have known Conditional Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 130-149, March.
- Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
- Harald Schellander & Tobias Hell, 2018. "Modeling snow depth extremes in Austria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1367-1389, December.
- Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
- Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016.
"A continuous updating weighted least squares estimator of tail dependence in high dimensions,"
LIDAM Discussion Papers ISBA
2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John H. J. & Kiriliouk, Anna & Segers, Johan, 2018. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Reprints ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2017.
"Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1248-1268, May.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-953, CIRJE, Faculty of Economics, University of Tokyo.
- Jouchi Nakajima & Tsuyoshi Kunihama & Yasuhiro Omori, 2015. "Bayesian Modeling of Dynamic Extreme Values: Extension of Generalized Extreme Value Distributions with Latent Stochastic Processes ," CIRJE F-Series CIRJE-F-952, CIRJE, Faculty of Economics, University of Tokyo.
- Koch, Erwan & Robert, Christian Y., 2022. "Stochastic derivative estimation for max-stable random fields," European Journal of Operational Research, Elsevier, vol. 302(2), pages 575-588.
- Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
- Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
- M. Ghil & Pascal Yiou & Stéphane Hallegatte & B. D. Malamud & P. Naveau & A. Soloviev & P. Friederichs & V. Keilis-Borok & D. Kondrashov & V. Kossobokov & O. Mestre & C. Nicolis & H. W. Rust & P. Sheb, 2011. "Extreme events: dynamics, statistics and prediction," Post-Print hal-00716514, HAL.
- A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
- Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
- A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
- Vettori, Sabrina & Huser, Raphael & Segers, Johan & Genton, Marc, 2017. "Bayesian Clustering and Dimension Reduction in Multivariate Extremes," LIDAM Discussion Papers ISBA 2017017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Joshua Hewitt & Miranda J. Fix & Jennifer A. Hoeting & Daniel S. Cooley, 2019. "Improved Return Level Estimation via a Weighted Likelihood, Latent Spatial Extremes Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 426-443, September.
- Erwan Koch, 2018. "Extremal dependence and spatial risk measures for insured losses due to extreme winds," Papers 1804.05694, arXiv.org, revised Dec 2019.
- R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
- Hongxiang Yan & Hamid Moradkhani, 2016. "Toward more robust extreme flood prediction by Bayesian hierarchical and multimodeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 203-225, March.
More about this item
Keywords
Bayesian analysis; Environmental data; Hierarchical model; Multiple durations; Spatial extreme; Spatial–temporal process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:95:y:2016:i:c:p:39-56. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.