IDEAS home Printed from https://ideas.repec.org/p/ris/smuesw/2022_001.html
   My bibliography  Save this paper

A Panel Clustering Approach to Analyzing Bubble Behavior

Author

Listed:
  • Liu, Yanbo

    (Shandong University)

  • Phillips, Peter C. B.

    (Yale University)

  • Yu, Jun

    (Singapore Management Uinversity)

Abstract

This study provides new mechanisms for identifying and estimating explosive bubbles in mixed-root panel autoregressions with a latent group structure. A postclustering approach is employed that combines a recursive k-means clustering algorithm with panel-data test statistics for testing the presence of explosive roots in time series trajectories. Uniform consistency of the k-means clustering algorithm is established, showing that the post-clustering estimate is asymptotically equivalent to the oracle counterpart that uses the true group identities. Based on the estimated group membership, right-tailed self-normalized t-tests and coefficient-based J-tests, each with pivotal limit distributions, are introduced to detect the explosive roots. The usual Information Criterion (IC) for selecting the correct number of groups is found to be inconsistent and a new method that combines IC with a Hausman-type specification test is proposed that consistently estimates the true number of groups. Extensive Monte Carlo simulations provide strong evidence that in finite samples, the recursive k-means clustering algorithm can correctly recover latent group membership in data of this type and the proposed post-clustering panel-data tests lead to substantial power gains compared with the time series approach. The proposed methods are used to identify bubble behavior in US and Chinese housing markets, and the US stock market, leading to new findings concerning speculative behavior in these markets.

Suggested Citation

  • Liu, Yanbo & Phillips, Peter C. B. & Yu, Jun, 2022. "A Panel Clustering Approach to Analyzing Bubble Behavior," Economics and Statistics Working Papers 1-2022, Singapore Management University, School of Economics.
  • Handle: RePEc:ris:smuesw:2022_001
    as

    Download full text from publisher

    File URL: https://ink.library.smu.edu.sg/soe_research/2591/
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hanming Fang & Quanlin Gu & Wei Xiong & Li-An Zhou, 2016. "Demystifying the Chinese Housing Boom," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 105-166.
    2. Peter C.B. Phillips & Sam Ouliaris & Joon Y. Park, 1988. "Testing for a Unit Root in the Presence of a Maintained Trend," Cowles Foundation Discussion Papers 880, Cowles Foundation for Research in Economics, Yale University.
    3. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    4. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    5. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    6. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    7. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    8. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    9. Moon, H.R.Hyungsik Roger & Perron, Benoit, 2004. "Testing for a unit root in panels with dynamic factors," Journal of Econometrics, Elsevier, vol. 122(1), pages 81-126, September.
    10. Kaiji Chen & Yi Wen, 2017. "The Great Housing Boom of China," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(2), pages 73-114, April.
    11. Xun Lu & Liangjun Su, 2017. "Determining the number of groups in latent panel structures with an application to income and democracy," Quantitative Economics, Econometric Society, vol. 8(3), pages 729-760, November.
    12. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    13. Goodman, Allen C. & Thibodeau, Thomas G., 2003. "Housing market segmentation and hedonic prediction accuracy," Journal of Housing Economics, Elsevier, vol. 12(3), pages 181-201, September.
    14. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    15. Hashem Pesaran, M. & Yamagata, Takashi, 2008. "Testing slope homogeneity in large panels," Journal of Econometrics, Elsevier, vol. 142(1), pages 50-93, January.
    16. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    17. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    18. William N. Goetzmann & Susan M. Wachter, 1995. "Clustering Methods for Real Estate Portfolios," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 23(3), pages 271-310, September.
    19. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    20. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    21. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    22. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    23. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    24. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    25. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    26. Hahn, Jinyong & Moon, Hyungsik Roger, 2010. "Panel Data Models With Finite Number Of Multiple Equilibria," Econometric Theory, Cambridge University Press, vol. 26(3), pages 863-881, June.
    27. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    28. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    29. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    30. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    31. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    32. Phillips, Peter C. B., 2018. "Dynamic Panel Anderson-Hsiao Estimation With Roots Near Unity," Econometric Theory, Cambridge University Press, vol. 34(2), pages 253-276, April.
    33. Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2021. "Nonstationary panel models with latent group structures and cross-section dependence," Journal of Econometrics, Elsevier, vol. 221(1), pages 198-222.
    34. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    35. Phillips, Peter C.B., 2023. "Estimation And Inference With Near Unit Roots," Econometric Theory, Cambridge University Press, vol. 39(2), pages 221-263, April.
    36. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    37. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    38. Chang, Yoosoon, 2002. "Nonlinear IV unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 110(2), pages 261-292, October.
    39. Robert J. Shiller, 2015. "Irrational Exuberance," Economics Books, Princeton University Press, edition 3, number 10421.
    40. Joakim Westerlund & Milda Norkutė & Ovidijus Stauskas, 2022. "The factor analytical approach in trending near unit root panels," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 501-508, May.
    41. Diba, Behzad T & Grossman, Herschel I, 1988. "Explosive Rational Bubbles in Stock Prices?," American Economic Review, American Economic Association, vol. 78(3), pages 520-530, June.
    42. Bourassa, Steven C. & Hamelink, Foort & Hoesli, Martin & MacGregor, Bryan D., 1999. "Defining Housing Submarkets," Journal of Housing Economics, Elsevier, vol. 8(2), pages 160-183, June.
    43. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    44. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    45. Westerlund, Joakim & Larsson, Rolf, 2012. "Testing for a unit root in a random coefficient panel data model," Journal of Econometrics, Elsevier, vol. 167(1), pages 254-273.
    46. Jia Li & Zhipeng Liao & Mengsi Gao, 2020. "Uniform nonparametric inference for time series using Stata," Stata Journal, StataCorp LP, vol. 20(3), pages 706-720, September.
    47. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    48. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
    49. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    50. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    51. Bai, Jushan & Ng, Serena, 2010. "Panel Unit Root Tests With Cross-Section Dependence: A Further Investigation," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1088-1114, August.
    52. Andrews, Donald W.K., 1988. "Laws of Large Numbers for Dependent Non-Identically Distributed Random Variables," Econometric Theory, Cambridge University Press, vol. 4(3), pages 458-467, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katerina Chrysikou & George Kapetanios, 2024. "Heterogeneous Grouping Structures in Panel Data," Papers 2407.19509, arXiv.org.
    2. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2021. "Nonstationary panel models with latent group structures and cross-section dependence," Journal of Econometrics, Elsevier, vol. 221(1), pages 198-222.
    2. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    3. Mao, Guangyu & Shen, Yan, 2019. "Bubbles or fundamentals? Modeling provincial house prices in China allowing for cross-sectional dependence," China Economic Review, Elsevier, vol. 53(C), pages 53-64.
    4. Bai, Jushan & Kao, Chihwa & Ng, Serena, 2009. "Panel cointegration with global stochastic trends," Journal of Econometrics, Elsevier, vol. 149(1), pages 82-99, April.
    5. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    7. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    8. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    9. Mariam Camarero & Sergi Moliner & Cecilio Tamarit, 2022. "Which are the long-run determinants of US outward FDI? Evidence using large long-memory panels," Working Papers 2022.08, International Network for Economic Research - INFER.
    10. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    11. Su, Liangjun & Wang, Wuyi & Xu, Xingbai, 2023. "Identifying latent group structures in spatial dynamic panels," Journal of Econometrics, Elsevier, vol. 235(2), pages 1955-1980.
    12. Lui, Yiu Lim & Phillips, Peter C.B. & Yu, Jun, 2024. "Robust testing for explosive behavior with strongly dependent errors," Journal of Econometrics, Elsevier, vol. 238(2).
    13. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    14. Denis Chetverikov & Elena Manresa, 2022. "Spectral and post-spectral estimators for grouped panel data models," Papers 2212.13324, arXiv.org, revised Dec 2022.
    15. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    16. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    17. Wagner, Martin, 2008. "The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?," Resource and Energy Economics, Elsevier, vol. 30(3), pages 388-408, August.
    18. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    19. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    20. Claudia Pigini & Alessandro Pionati & Francesco Valentini, 2023. "Specification testing with grouped fixed effects," Papers 2310.01950, arXiv.org.

    More about this item

    Keywords

    Bubbles; Clustering; Mildly explosive behavior; k-means; Latent membership detection;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:smuesw:2022_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Cheong Pei Qi (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.