IDEAS home Printed from https://ideas.repec.org/p/unm/unumer/2022017.html
   My bibliography  Save this paper

Quantile return and volatility connectedness among Non-Fungible Tokens (NFTs) and (un)conventional asset

Author

Listed:
  • Urom, C.
  • Ndubuisi, Gideon

    (RS: GSBE other - not theme-related research, Mt Economic Research Inst on Innov/Techn)

  • Guesmi, K.

Abstract

This paper uses the Quantile Vector-Autoregressive (Q-VAR) connectedness technique to examine the return and volatility connectedness among NFTs and (un)conventional assets including cryptocurrency, energy, technology, equity, precious metals, and fixed income financial assets across three quantiles corresponding to the normal, bearish, and bullish market conditions. It also explores the predictive powers of major macroeconomic and geopolitical indicators on the return and volatility connectedness across these three market conditions using a linear regression model. The main findings are as follows. First, the return and volatility connectedness vary across the market conditions, with the levels during the bearish and bullish market conditions being higher. Second, except under the bullish market condition, the total return connectedness is higher than those of total volatility connectedness. Third, NFTs are, at best, decoupled from (un)conventional assets during the normal market condition. Fourth, NFTs is a net return shock receivers except under the bullish market condition where it is a net transmitters. However, it is a net volatility shock receiver irrespective of the market condition. Fifth, during periods of economic crisis the total return and volatility connectedness rise (decreases) under the normal and bearish (bullish) market conditions. Finally, geopolitical risks, business environment conditions, and market and economic policy uncertainty are important predictors of return and volatility connectedness, although the predictive strength and direction vary across market conditions. We discuss the implications of our findings.

Suggested Citation

  • Urom, C. & Ndubuisi, Gideon & Guesmi, K., 2022. "Quantile return and volatility connectedness among Non-Fungible Tokens (NFTs) and (un)conventional asset," MERIT Working Papers 2022-017, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
  • Handle: RePEc:unm:unumer:2022017
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/106571525/wp2022_017.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Malhotra, Arvind & O’Neill, Hugh & Stowell, Porter, 2022. "Thinking strategically about blockchain adoption and risk mitigation," Business Horizons, Elsevier, vol. 65(2), pages 159-171.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2021. "Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach," Economics Letters, Elsevier, vol. 204(C).
    4. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    5. Ko, Hyungjin & Son, Bumho & Lee, Yunyoung & Jang, Huisu & Lee, Jaewook, 2022. "The economic value of NFT: Evidence from a portfolio analysis using mean–variance framework," Finance Research Letters, Elsevier, vol. 47(PA).
    6. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    7. Londono, Juan M., 2019. "Bad bad contagion," Journal of Banking & Finance, Elsevier, vol. 108(C).
    8. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    9. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    10. Bouri, Elie & Saeed, Tareq & Vo, Xuan Vinh & Roubaud, David, 2021. "Quantile connectedness in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    11. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    12. Matthieu Nadini & Laura Alessandretti & Flavio Di Giacinto & Mauro Martino & Luca Maria Aiello & Andrea Baronchelli, 2021. "Mapping the NFT revolution: market trends, trade networks and visual features," Papers 2106.00647, arXiv.org, revised Sep 2021.
    13. Wilson, Kathleen Bridget & Karg, Adam & Ghaderi, Hadi, 2022. "Prospecting non-fungible tokens in the digital economy: Stakeholders and ecosystem, risk and opportunity," Business Horizons, Elsevier, vol. 65(5), pages 657-670.
    14. Umar, Zaghum & Jareño, Francisco & Escribano, Ana, 2021. "Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness," Resources Policy, Elsevier, vol. 73(C).
    15. Karim, Sitara & Lucey, Brian M. & Naeem, Muhammad Abubakr & Uddin, Gazi Salah, 2022. "Examining the interrelatedness of NFTs, DeFi tokens and cryptocurrencies," Finance Research Letters, Elsevier, vol. 47(PB).
    16. Umar, Zaghum & Gubareva, Mariya & Teplova, Tamara & Tran, Dang K., 2022. "Covid-19 impact on NFTs and major asset classes interrelations: Insights from the wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 47(PB).
    17. Dowling, Michael, 2022. "Fertile LAND: Pricing non-fungible tokens," Finance Research Letters, Elsevier, vol. 44(C).
    18. Antonakakis, Nikolaos & Gabauer, David, 2017. "Refined Measures of Dynamic Connectedness based on TVP-VAR," MPRA Paper 78282, University Library of Munich, Germany.
    19. Wei, Yu & Bai, Lan & Li, Xiafei, 2022. "Normal and extreme interactions among nonferrous metal futures: A new quantile-frequency connectedness approach," Finance Research Letters, Elsevier, vol. 47(PB).
    20. Dendramis, Yiannis & Kapetanios, George & Tzavalis, Elias, 2015. "Shifts in volatility driven by large stock market shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 130-147.
    21. Dowling, Michael, 2022. "Is non-fungible token pricing driven by cryptocurrencies?," Finance Research Letters, Elsevier, vol. 44(C).
    22. Liu, Zhenhua & Shi, Xunpeng & Zhai, Pengxiang & Wu, Shan & Ding, Zhihua & Zhou, Yuqin, 2021. "Tail risk connectedness in the oil-stock nexus: Evidence from a novel quantile spillover approach," Resources Policy, Elsevier, vol. 74(C).
    23. Kensuke Ito & Kyohei Shibano & Gento Mogi, 2022. "Bubble Prediction of Non-Fungible Tokens (NFTs): An Empirical Investigation," Papers 2203.12587, arXiv.org, revised Jun 2022.
    24. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    25. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urom, Christian & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Dynamic dependence and predictability between volume and return of Non-Fungible Tokens (NFTs): The roles of market factors and geopolitical risks," Finance Research Letters, Elsevier, vol. 50(C).
    2. Palomba, Giulio & Tedeschi, Marco, 2024. "Contagion among European financial indices, evidence from a quantile VAR approach," Economic Systems, Elsevier, vol. 48(2).
    3. Ndubuisi, Gideon & Urom, Christian, 2023. "Dependence and risk spillovers among clean cryptocurrencies prices and media environmental attention," Research in International Business and Finance, Elsevier, vol. 65(C).
    4. Lin, Min-Bin & Wang, Bingling & Bocart, Fabian Y.R.P. & Hafner, Christian M. & Härdle, Wolfgang K., 2022. "DAI Digital Art Index : a robust price index for heterogeneous digital assets," LIDAM Discussion Papers ISBA 2022036, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urom, Christian & Ndubuisi, Gideon & Guesmi, Khaled, 2024. "Global macroeconomic factors and the connectedness among NFTs and (un)conventional assets," Research in International Business and Finance, Elsevier, vol. 71(C).
    2. Aysan, Ahmet Faruk & Batten, Jonathan & Gozgor, Giray & Khalfaoui, Rabeh & Nanaeva, Zhamal, 2024. "Metaverse and financial markets: A quantile-time-frequency connectedness analysis," Research in International Business and Finance, Elsevier, vol. 72(PB).
    3. Palomba, Giulio & Tedeschi, Marco, 2024. "Contagion among European financial indices, evidence from a quantile VAR approach," Economic Systems, Elsevier, vol. 48(2).
    4. Zhang, Wenting & Liu, Tiantian & Zhang, Yulian & Hamori, Shigeyuki, 2024. "Can NFTs hedge the risk of traditional assets after the COVID-19 pandemic?," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    5. Urom, Christian & Ndubuisi, Gideon, 2023. "Do geopolitical risks and global market factors influence the dynamic dependence among regional sustainable investments and major commodities?," The Quarterly Review of Economics and Finance, Elsevier, vol. 91(C), pages 94-111.
    6. Ali, Shoaib & Al-Nassar, Nassar S. & Naveed, Muhammad, 2024. "Bridging the gap: Uncovering static and dynamic relationships between digital assets and BRICS equity markets," Global Finance Journal, Elsevier, vol. 60(C).
    7. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.
    8. Zhongzheng, Wang, 2023. "Extreme risk transmission mechanism between oil, green bonds and new energy vehicles," Innovation and Green Development, Elsevier, vol. 2(3).
    9. Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).
    10. Zhang, Hongwei & Zhang, Yubo & Gao, Wang & Li, Yingli, 2023. "Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    11. Husain, Afzol & Karim, Sitara & Sensoy, Ahmet, 2024. "Financial fusion: Bridging Islamic and Green investments in the European stock market," International Review of Financial Analysis, Elsevier, vol. 94(C).
    12. Bhattacherjee, Purba & Mishra, Sibanjan & Kang, Sang Hoon, 2024. "Extreme time-frequency connectedness across U.S. sector stock and commodity futures markets," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1176-1197.
    13. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    14. Ghosh, Bikramaditya & Pham, Linh & Teplova, Tamara & Umar, Zaghum, 2023. "COVID-19 and the quantile connectedness between energy and metal markets," Energy Economics, Elsevier, vol. 117(C).
    15. Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Mirza, Nawazish & Umar, Muhammad, 2022. "Safe haven properties of green, Islamic, and crypto assets and investor's proclivity towards treasury and gold," Energy Economics, Elsevier, vol. 115(C).
    16. Chen, Yu & Lin, Boqiang, 2022. "Quantifying the extreme spillovers on worldwide ESG leaders' equity," International Review of Financial Analysis, Elsevier, vol. 84(C).
    17. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    18. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    19. Goodell, John W. & Yadav, Miklesh Prasad & Ruan, Junhu & Abedin, Mohammad Zoynul & Malhotra, Nidhi, 2023. "Traditional assets, digital assets and renewable energy: Investigating connectedness during COVID-19 and the Russia-Ukraine war," Finance Research Letters, Elsevier, vol. 58(PA).
    20. Jareño, Francisco & Yousaf, Imran, 2023. "Artificial intelligence-based tokens: Fresh evidence of connectedness with artificial intelligence-based equities," International Review of Financial Analysis, Elsevier, vol. 89(C).

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:unumer:2022017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ad Notten (email available below). General contact details of provider: https://edirc.repec.org/data/meritnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.