IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p647-d519412.html
   My bibliography  Save this article

The Convergence Rate of High-Dimensional Sample Quantiles for φ -Mixing Observation Sequences

Author

Listed:
  • Ling Peng

    (School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Dong Han

    (School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

In this paper, we obtain the convergence rate for the high-dimensional sample quantiles with the φ -mixing dependent sequence. The resulting convergence rate is shown to be faster than that obtained by the Hoeffding-type inequalities. Moreover, the convergence rate of the high-dimensional sample quantiles for the observation sequence taking discrete values is also provided.

Suggested Citation

  • Ling Peng & Dong Han, 2021. "The Convergence Rate of High-Dimensional Sample Quantiles for φ -Mixing Observation Sequences," Mathematics, MDPI, vol. 9(6), pages 1-8, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:647-:d:519412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    2. Ibragimov, Rustam & Prokhorov, Artem, 2016. "Heavy tails and copulas: Limits of diversification revisited," Economics Letters, Elsevier, vol. 149(C), pages 102-107.
    3. Mengmei Xi & Xuejun Wang, 2019. "On the rates of asymptotic normality for recursive kernel density estimators under ϕ-mixing assumptions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 340-363, April.
    4. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    5. Xuejun Wang & Shijie Wang & Rui Wang, 2017. "Exponential inequalities for sums of unbounded ϕ-mixing sequence and their applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 457-464, January.
    6. Sim, Nicholas, 2016. "Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 31-45.
    7. Tomohiro Ando & Jushan Bai, 2020. "Quantile Co-Movement in Financial Markets: A Panel Quantile Model With Unobserved Heterogeneity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 266-279, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hans Rau-Bredow, 2019. "Bigger Is Not Always Safer: A Critical Analysis of the Subadditivity Assumption for Coherent Risk Measures," Risks, MDPI, vol. 7(3), pages 1-18, August.
    2. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    3. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    4. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    5. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    6. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    7. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    8. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    9. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    10. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    11. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    12. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    13. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    14. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    15. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    16. Battulga Gankhuu, 2022. "Merton's Default Risk Model for Private Company," Papers 2208.01974, arXiv.org.
    17. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    18. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    19. Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020. "Partially censored posterior for robust and efficient risk evaluation," Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
    20. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:647-:d:519412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.