IDEAS home Printed from https://ideas.repec.org/p/zbw/safewp/397.html
   My bibliography  Save this paper

Clustering-based sector investing

Author

Listed:
  • Bagnara, Matteo
  • Goodarzi, Milad

Abstract

Industry classification groups firms into finer partitions to help investments and empirical analysis. To overcome the well-documented limitations of existing industry definitions, like their stale nature and coarse categories for firms with multiple operations, we employ a clustering approach on 69 firm characteristics and allocate companies to novel economic sectors maximizing the within-group explained variation. Such sectors are dynamic yet stable, and represent a superior investment set compared to standard classification schemes for portfolio optimization and for trading strategies based on within-industry mean-reversion, which give rise to a latent risk factor significantly priced in the cross-section. We provide a new metric to quantify feature importance for clustering methods, finding that size drives differences across classical industries while book-to-market and financial liquidity variables matter for clustering-based sectors.

Suggested Citation

  • Bagnara, Matteo & Goodarzi, Milad, 2023. "Clustering-based sector investing," SAFE Working Paper Series 397, Leibniz Institute for Financial Research SAFE.
  • Handle: RePEc:zbw:safewp:397
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/273735/1/1854331663.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kahle, Kathleen M. & Walkling, Ralph A., 1996. "The Impact of Industry Classifications on Financial Research," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(3), pages 309-335, September.
    2. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    3. Clarke, Richard N, 1989. "SICs as Delineators of Economic Markets," The Journal of Business, University of Chicago Press, vol. 62(1), pages 17-31, January.
    4. Gerard Hoberg & Gordon Phillips, 2016. "Text-Based Network Industries and Endogenous Product Differentiation," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1423-1465.
    5. Kozak, Serhiy & Nagel, Stefan & Santosh, Shrihari, 2020. "Shrinking the cross-section," Journal of Financial Economics, Elsevier, vol. 135(2), pages 271-292.
    6. Hameed, Allaudeen & Mian, G. Mujtaba, 2015. "Industries and Stock Return Reversals," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(1-2), pages 89-117, April.
    7. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    8. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
    9. Hoberg, Gerard & Phillips, Gordon M., 2018. "Text-Based Industry Momentum," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(6), pages 2355-2388, December.
    10. Jayanthi Krishnan & Eric Press, 2003. "The North American Industry Classification System and Its Implications for Accounting Research," Contemporary Accounting Research, John Wiley & Sons, vol. 20(4), pages 685-717, December.
    11. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    12. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    13. Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
    14. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    15. Hrazdil, Karel & Trottier, Kim & Zhang, Ray, 2013. "A comparison of industry classification schemes: A large sample study," Economics Letters, Elsevier, vol. 118(1), pages 77-80.
    16. Martin Lettau & Markus Pelger & Stijn Van Nieuwerburgh, 2020. "Factors That Fit the Time Series and Cross-Section of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2274-2325.
    17. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    18. Fama, Eugene F. & French, Kenneth R., 1997. "Industry costs of equity," Journal of Financial Economics, Elsevier, vol. 43(2), pages 153-193, February.
    19. Belén Villalonga, 2004. "Does Diversification Cause the "Diversification Discount"?," Financial Management, Financial Management Association, vol. 33(2), Summer.
    20. Jame, Russell & Tong, Qing, 2014. "Industry-based style investing," Journal of Financial Markets, Elsevier, vol. 19(C), pages 110-130.
    21. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    22. Sanjeev Bhojraj & Charles M. C. Lee & Derek K. Oler, 2003. "What's My Line? A Comparison of Industry Classification Schemes for Capital Market Research," Journal of Accounting Research, Wiley Blackwell, vol. 41(5), pages 745-774, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
    2. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Data, MDPI, vol. 2(2), pages 1-77, June.
    3. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    4. Cong, Lin William & George, Nathan Darden & Wang, Guojun, 2023. "RIM-based value premium and factor pricing using value-price divergence," Journal of Banking & Finance, Elsevier, vol. 149(C).
    5. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    6. Lioui, Abraham & Tarelli, Andrea, 2022. "Chasing the ESG factor," Journal of Banking & Finance, Elsevier, vol. 139(C).
    7. Dou, Winston Wei & Ji, Yan & Wu, Wei, 2021. "Competition, profitability, and discount rates," Journal of Financial Economics, Elsevier, vol. 140(2), pages 582-620.
    8. Kang, Moonsoo & Khaksari, S. & Nam, Kiseok, 2018. "Corporate investment, short-term return reversal, and stock liquidity," Journal of Financial Markets, Elsevier, vol. 39(C), pages 68-83.
    9. Bo Li & Sabri Boubaker & Zhenya Liu & Waël Louhichi & Yao Yao, 2023. "Exploring the Nonlinear Idiosyncratic Volatility Puzzle: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 527-559, August.
    10. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    11. De Nard, Gianluca & Zhao, Zhao, 2023. "Using, taming or avoiding the factor zoo? A double-shrinkage estimator for covariance matrices," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 23-35.
    12. Atif Ellahie, 2021. "Earnings beta," Review of Accounting Studies, Springer, vol. 26(1), pages 81-122, March.
    13. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    14. Chou, Pin-Huang & Ho, Po-Hsin & Ko, Kuan-Cheng, 2012. "Do industries matter in explaining stock returns and asset-pricing anomalies?," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 355-370.
    15. Zura Kakushadze & Willie Yu, 2017. "Open Source Fundamental Industry Classification," Papers 1706.04210, arXiv.org, revised Dec 2017.
    16. Li, Scott, 2022. "Industry classification, industry momentum and short-term reversal," Finance Research Letters, Elsevier, vol. 48(C).
    17. Karel Hrazdil & Thomas Scott, 2013. "The role of industry classification in estimating discretionary accruals," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 15-39, January.
    18. van Binsbergen, Jules H. & Boons, Martijn & Opp, Christian C. & Tamoni, Andrea, 2023. "Dynamic asset (mis)pricing: Build-up versus resolution anomalies," Journal of Financial Economics, Elsevier, vol. 147(2), pages 406-431.
    19. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    20. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).

    More about this item

    Keywords

    Empirical Asset Pricing; Risk Premium; Machine Learning; Industry Classification; Clustering;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:safewp:397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/csafede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.