IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v54y2023ics1544612323001216.html
   My bibliography  Save this article

Dynamical linkages between the Brent oil price and stock markets in BRICS using quantile connectedness approach

Author

Listed:
  • Chang, Hao-Wen
  • Chang, Tsangyao
  • Ling, Yuan Hung
  • Yang, Yung-Lieh

Abstract

The Quantile connectedness approach, which allows for a detailed scrutinization of the connectedness, to analysis the connectedness for oil price and BRICS stock markets. Russia and South Africa plays the net transmitting roles, and similar evidence is obtained in Brazil after 2010. Brent oil, India, and Shanghai are net recipients for most time. The extent of the connectedness is further stronger when facing up the market slump such as the global financial crisis, European debt crisis, and Covid-19 periods. For investors, practitioners, and financial institutions, periodically changing the assets allocating can follow noted above evidence.

Suggested Citation

  • Chang, Hao-Wen & Chang, Tsangyao & Ling, Yuan Hung & Yang, Yung-Lieh, 2023. "Dynamical linkages between the Brent oil price and stock markets in BRICS using quantile connectedness approach," Finance Research Letters, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:finlet:v:54:y:2023:i:c:s1544612323001216
    DOI: 10.1016/j.frl.2023.103748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323001216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.103748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Umar, Zaghum & Trabelsi, Nader & Zaremba, Adam, 2021. "Oil shocks and equity markets: The case of GCC and BRICS economies," Energy Economics, Elsevier, vol. 96(C).
    2. Chatziantoniou, Ioannis & Gabauer, David, 2021. "EMU risk-synchronisation and financial fragility through the prism of dynamic connectedness," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 1-14.
    3. Chatziantoniou, Ioannis & Gabauer, David & Stenfors, Alexis, 2021. "Interest rate swaps and the transmission mechanism of monetary policy: A quantile connectedness approach," Economics Letters, Elsevier, vol. 204(C).
    4. Gabauer, David, 2021. "Dynamic measures of asymmetric & pairwise connectedness within an optimal currency area: Evidence from the ERM I system," Journal of Multinational Financial Management, Elsevier, vol. 60(C).
    5. Su, Chi-Wei & Huang, Shi-Wen & Qin, Meng & Umar, Muhammad, 2021. "Does crude oil price stimulate economic policy uncertainty in BRICS?," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    6. Zhen Yu & Yao Xiao & Yuankun Li, 2020. "The Response of the Labor Force Participation Rate to an Epidemic: Evidence from a Cross-Country Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(10), pages 2390-2407, August.
    7. Narayan, Paresh Kumar & Sharma, Susan & Poon, Wai Ching & Westerlund, Joakim, 2014. "Do oil prices predict economic growth? New global evidence," Energy Economics, Elsevier, vol. 41(C), pages 137-146.
    8. Ahmad, Wasim & Sehgal, Sanjay & Bhanumurthy, N.R., 2013. "Eurozone crisis and BRIICKS stock markets: Contagion or market interdependence?," Economic Modelling, Elsevier, vol. 33(C), pages 209-225.
    9. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    10. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    11. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    12. Ji, Qiang & Liu, Bing-Yue & Zhao, Wan-Li & Fan, Ying, 2020. "Modelling dynamic dependence and risk spillover between all oil price shocks and stock market returns in the BRICS," International Review of Financial Analysis, Elsevier, vol. 68(C).
    13. Mensi, Walid & Hkiri, Besma & Al-Yahyaee, Khamis H. & Kang, Sang Hoon, 2018. "Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 74-102.
    14. Durmuş Çağrı Yıldırım & Seyfettin Erdoğan & Emrah İsmail Çevik, 2018. "Regime-Dependent Effect of Crude Oil Price on BRICS Stock Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(8), pages 1706-1719, June.
    15. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    16. Jones, Charles M & Kaul, Gautam, 1996. "Oil and the Stock Markets," Journal of Finance, American Finance Association, vol. 51(2), pages 463-491, June.
    17. Ghulam Abbas & Shouyang Wang, 2020. "Does macroeconomic uncertainty really matter in predicting stock market behavior? A comparative study on China and USA," China Finance Review International, Emerald Group Publishing Limited, vol. 10(4), pages 393-427, May.
    18. Boubaker, Heni & Raza, Syed Ali, 2017. "A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets," Energy Economics, Elsevier, vol. 64(C), pages 105-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hailing & Pei, Xiaoyun & Yang, Yimin & Zhang, Hua, 2024. "Assessing the impact of energy-related uncertainty on G20 stock market returns: A decomposed contemporaneous and lagged R2 connectedness approach," Energy Economics, Elsevier, vol. 132(C).
    2. Yildirim, Zekeriya & Guloglu, Hasan, 2024. "Macro-financial transmission of global oil shocks to BRIC countries — International financial (uncertainty) conditions matter," Energy, Elsevier, vol. 306(C).
    3. Rehman, Mobeen Ur & Nautiyal, Neeraj & Vo, Xuan Vinh & Ghardallou, Wafa & Kang, Sang Hoon, 2023. "Is the impact of oil shocks more pronounced during extreme market conditions?," Resources Policy, Elsevier, vol. 85(PA).
    4. Hanif, Waqas & Hadhri, Sinda & El Khoury, Rim, 2024. "Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil producers and consumers," Journal of Commodity Markets, Elsevier, vol. 34(C).
    5. Zhang, He & Gong, Zhenting & Yang, Yunglieh & Chen, Fan, 2023. "Dynamic connectedness between China green bond, carbon market and traditional financial markets: Evidence from quantile connectedness approach," Finance Research Letters, Elsevier, vol. 58(PC).
    6. Dhoha Mellouli Ellouz Siwar, 2023. "Dynamical Linkages and Frequency Spillovers between Crude Oil and Stock Markets in BRICS During Turbulent and Tranquil Times," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(3), pages 77-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanif, Waqas & Hadhri, Sinda & El Khoury, Rim, 2024. "Quantile spillovers and connectedness between oil shocks and stock markets of the largest oil producers and consumers," Journal of Commodity Markets, Elsevier, vol. 34(C).
    2. Ghaemi Asl, Mahdi & Raheem, Ibrahim D. & Rashidi, Muhammad Mahdi, 2023. "Do stochastic risks flow between industrial and precious metals, Islamic stocks, green bonds, green stocks, clean investments, major foreign exchange rates, and Bitcoin?," Resources Policy, Elsevier, vol. 86(PA).
    3. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    4. Cunado, Juncal & Chatziantoniou, Ioannis & Gabauer, David & de Gracia, Fernando Perez & Hardik, Marfatia, 2023. "Dynamic spillovers across precious metals and oil realized volatilities: Evidence from quantile extended joint connectedness measures," Journal of Commodity Markets, Elsevier, vol. 30(C).
    5. Al-Fayoumi, Nedal & Bouri, Elie & Abuzayed, Bana, 2023. "Decomposed oil price shocks and GCC stock market sector returns and volatility," Energy Economics, Elsevier, vol. 126(C).
    6. Stenfors, Alexis & Chatziantoniou, Ioannis & Gabauer, David, 2022. "Independent policy, dependent outcomes: A game of cross-country dominoes across European yield curves," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    7. Al-Nassar, Nassar S. & Assaf, Rima & Chaibi, Anis & Makram, Beljid, 2024. "The nexus between mineral, renewable commodities, and regional stock sectors during health and military crises," Resources Policy, Elsevier, vol. 96(C).
    8. Juncal Cunado & David Gabauer & Rangan Gupta & Chien-Chiang Lee, 2022. "On the Propagation Mechanism of International Real Interest Rate Spillovers: Evidence from More than 200 Years of Data," Working Papers 202212, University of Pretoria, Department of Economics.
    9. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    10. Naeem, Muhammad Abubakr & Chatziantoniou, Ioannis & Gabauer, David & Karim, Sitara, 2024. "Measuring the G20 stock market return transmission mechanism: Evidence from the R2 connectedness approach," International Review of Financial Analysis, Elsevier, vol. 91(C).
    11. Liu, Min & Liu, Hong-Fei & Lee, Chien-Chiang, 2024. "An empirical study on the response of the energy market to the shock from the artificial intelligence industry," Energy, Elsevier, vol. 288(C).
    12. Mensi, Walid & Rehman, Mobeen Ur & Al-Yahyaee, Khamis Hamed & Vo, Xuan Vinh, 2023. "Frequency dependence between oil futures and international stock markets and the role of gold, bonds, and uncertainty indices: Evidence from partial and multivariate wavelet approaches," Resources Policy, Elsevier, vol. 80(C).
    13. Rao, Amar & Lucey, Brian & Kumar, Satish & Lim, Weng Marc, 2023. "Do green energy markets catch cold when conventional energy markets sneeze?," Energy Economics, Elsevier, vol. 127(PA).
    14. Nong, Huifu & Liu, Hongxiao, 2023. "Measuring the frequency and quantile connectedness between policy categories and global oil price," Resources Policy, Elsevier, vol. 83(C).
    15. Gabauer, David & Chatziantoniou, Ioannis & Stenfors, Alexis, 2023. "Model-free connectedness measures," Finance Research Letters, Elsevier, vol. 54(C).
    16. Lu, Chengwu & Zafar, Muhammad Wasif & Cevik, Emrah I. & Destek, Mehmet Akif & Bugan, Mehmet Fatih, 2023. "Time and quantile domain connectedness between the geopolitical risk of China and precious metals markets," Resources Policy, Elsevier, vol. 85(PA).
    17. Li, Hailing & Pei, Xiaoyun & Yang, Yimin & Zhang, Hua, 2024. "Assessing the impact of energy-related uncertainty on G20 stock market returns: A decomposed contemporaneous and lagged R2 connectedness approach," Energy Economics, Elsevier, vol. 132(C).
    18. Shahzad, Umer & Ghaemi Asl, Mahdi & Panait, Mirela & Sarker, Tapan & Apostu, Simona Andreea, 2023. "Emerging interaction of artificial intelligence with basic materials and oil & gas companies: A comparative look at the Islamic vs. conventional markets," Resources Policy, Elsevier, vol. 80(C).
    19. Abid, Ilyes & Benkraiem, Ramzi & Mzoughi, Hela & Urom, Christian, 2024. "From black gold to financial fallout: Analyzing extreme risk spillovers in oil-exporting nations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    20. Malik, Farooq & Umar, Zaghum, 2024. "Quantile connectedness of oil price shocks with socially responsible investments," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:54:y:2023:i:c:s1544612323001216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.