IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/24-1085.html
   My bibliography  Save this paper

Estimation of Non-Gaussian Factors Using Higher-order Multi-cumulants in Weak Factor Models

Author

Listed:
  • Wanbo Lu
  • Guanglin Huang
  • Kris Boudt

Abstract

We estimate the latent factors in high-dimensional non-Gaussian panel data using the eigenvalue decomposition of the product between the higher-order multi-cumulant and its transpose. The proposed Higher order multi-cumulant Factor Analysis (HFA) approach comprises an eigenvalue ratio test to select the number of non-Gaussian factors and uses the eigenvector to estimate the factor loadings. Unlike covariance-based approaches, HFA remains reliable for estimating the nonGaussian factors in weak factor models with Gaussian error terms. Simulation results confirm that HFA estimators improve the accuracy of factor selection and estimation compared to covariancebased approaches. We illustrate the use of HFA to detect and estimate the factors for the FREDMD data set and use them to forecast the monthly S&P 500 equity premium.

Suggested Citation

  • Wanbo Lu & Guanglin Huang & Kris Boudt, 2024. "Estimation of Non-Gaussian Factors Using Higher-order Multi-cumulants in Weak Factor Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 24/1085, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:24/1085
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_24_1085.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    2. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Eric Jondeau & Emmanuel Jurczenko & Michael Rockinger, 2018. "Moment Component Analysis: An Illustration With International Stock Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 576-598, October.
    5. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    6. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    7. Boudt, Kris & Cornilly, Dries & Verdonck, Tim, 2020. "Nearest comoment estimation with unobserved factors," Journal of Econometrics, Elsevier, vol. 217(2), pages 381-397.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    10. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    11. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    12. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    13. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    14. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    15. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wei & Yonghui Zhang, 2023. "Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?," Papers 2305.05934, arXiv.org, revised Nov 2024.
    2. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    3. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    4. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    5. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    6. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
    7. Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak Factor Models and the Analysis of High-Dimensional Time Series," Working Papers ECARES 2024-14, ULB -- Universite Libre de Bruxelles.
    8. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    9. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
    10. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    11. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    12. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    13. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    14. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
    15. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    16. Yoshimasa Uematsu & Takashi Yamagata, 2020. "Inference in Weak Factor Models," ISER Discussion Paper 1080, Institute of Social and Economic Research, Osaka University.
    17. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    18. Zhaoxing Gao & Ruey S. Tsay, 2023. "Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors," Papers 2307.07689, arXiv.org.
    19. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    20. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Higher-order multi-cumulants; High-dimensional factor models; Weak factors; Consistency; Eigenvalues;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:24/1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.