IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v238y2024i1s0304407623002944.html
   My bibliography  Save this article

Rank-based max-sum tests for mutual independence of high-dimensional random vectors

Author

Listed:
  • Wang, Hongfei
  • Liu, Binghui
  • Feng, Long
  • Ma, Yanyuan

Abstract

We consider the problem of testing mutual independence of high-dimensional random vectors, and propose a series of high-dimensional rank-based max-sum tests, which are suitable for high-dimensional data and can be robust to distribution types of the variables, form of the dependence between variables and the sparsity of correlation coefficients. Further, we demonstrate the application of some representative members of the proposed tests on testing cross-sectional independence of the error vectors under fixed effects panel data regression models. We establish the asymptotic properties of the proposed tests under the null and alternative hypotheses, respectively, and then demonstrate the superiority of the proposed tests through extensive simulations, which suggest that they combine the advantages of both the max-type and sum-type high-dimensional rank-based tests. Finally, a real panel data analysis is performed to illustrate the application of the proposed tests.

Suggested Citation

  • Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
  • Handle: RePEc:eee:econom:v:238:y:2024:i:1:s0304407623002944
    DOI: 10.1016/j.jeconom.2023.105578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623002944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2023.105578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angrist, Joshua D., 1997. "Conditional independence in sample selection models," Economics Letters, Elsevier, vol. 54(2), pages 103-112, February.
    2. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    3. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    4. Huang, Meng & Sun, Yixiao & White, Halbert, 2016. "A Flexible Nonparametric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1434-1482, December.
    5. Yongmiao Hong, 1998. "Testing for pairwise serial independence via the empirical distribution function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 429-453.
    6. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    7. Su, Liangjun & White, Halbert, 2008. "A Nonparametric Hellinger Metric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 24(4), pages 829-864, August.
    8. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    9. M. Hashem Pesaran & Aman Ullah & Takashi Yamagata, 2008. "A bias-adjusted LM test of error cross-section independence," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 105-127, March.
    10. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    11. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    12. Oliver Linton & Pedro Gozalo, 2014. "Testing Conditional Independence Restrictions," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 523-552, August.
    13. James R. Schott, 2005. "Testing for complete independence in high dimensions," Biometrika, Biometrika Trust, vol. 92(4), pages 951-956, December.
    14. Long Feng & Yanling Ding & Binghui Liu, 2020. "Rank‐based Tests for Cross‐sectional Dependence in Large (N, T) Fixed Effects Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1198-1216, October.
    15. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    16. Frees, Edward W., 1995. "Assessing cross-sectional correlation in panel data," Journal of Econometrics, Elsevier, vol. 69(2), pages 393-414, October.
    17. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    18. Lee, Lung-Fei, 2002. "Consistency And Efficiency Of Least Squares Estimation For Mixed Regressive, Spatial Autoregressive Models," Econometric Theory, Cambridge University Press, vol. 18(2), pages 252-277, April.
    19. Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015. "Specification test for panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
    20. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    21. P. M. Robinson, 1991. "Consistent Nonparametric Entropy-Based Testing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 437-453.
    22. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
    23. Marc Hallin & Madan Lal Puri, 1992. "Rank tests for time-series analysis: a survey," ULB Institutional Repository 2013/2229, ULB -- Universite Libre de Bruxelles.
    24. Matei Demetrescu & Ulrich Homm, 2016. "Directed Tests of No Cross‐Sectional Correlation in Large‐N Panel Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 4-31, January.
    25. Martin Huber & Blaise Melly, 2015. "A Test of the Conditional Independence Assumption in Sample Selection Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1144-1168, November.
    26. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    27. Fang Han & Shizhe Chen & Han Liu, 2017. "Distribution-free tests of independence in high dimensions," Biometrika, Biometrika Trust, vol. 104(4), pages 813-828.
    28. Yongmiao Hong, 2000. "Generalized spectral tests for serial dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 557-574.
    29. Matilla-Garci­a, Mariano & Ruiz Mari­n, Manuel, 2008. "A non-parametric independence test using permutation entropy," Journal of Econometrics, Elsevier, vol. 144(1), pages 139-155, May.
    30. Wang, Xia & Hong, Yongmiao, 2018. "Characteristic Function Based Testing For Conditional Independence: A Nonparametric Regression Approach," Econometric Theory, Cambridge University Press, vol. 34(4), pages 815-849, August.
    31. Jianqing Fan & Yuan Liao & Jiawei Yao, 2015. "Power Enhancement in High‐Dimensional Cross‐Sectional Tests," Econometrica, Econometric Society, vol. 83(4), pages 1497-1541, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
    2. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2016. "Estimation of heterogeneous panels with structural breaks," Journal of Econometrics, Elsevier, vol. 191(1), pages 176-195.
    3. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    4. Feng, Long & Zhao, Ping & Ding, Yanling & Liu, Binghui, 2021. "Rank-based tests of cross-sectional dependence in panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    5. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    6. Xiaojun Song & Haoyu Wei, 2021. "Nonparametric Tests of Conditional Independence for Time Series," Papers 2110.04847, arXiv.org.
    7. Demetrescu, Matei & Hosseinkouchack, Mehdi & Rodrigues, Paulo M. M., 2023. "Tests of no cross-sectional error dependence in panel quantile regressions," Ruhr Economic Papers 1041, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Zhenhong Huang & Zhaoyuan Li & Jianfeng Yao, 2023. "Unified and robust Lagrange multiplier type tests for cross-sectional independence in large panel data models," Papers 2302.14387, arXiv.org.
    9. Badi H. Baltagi & Qu Feng & Chihwa Kao, 2009. "Testing for Sphericity in a Fixed Effects Panel Data Model (Revised July 2009)," Center for Policy Research Working Papers 112, Center for Policy Research, Maxwell School, Syracuse University.
    10. Peng, Bin & Yu, Junqi & Zhu, Yi, 2021. "A heteroskedasticity robust test for cross-sectional correlation in a fixed effects panel data model," Economics Letters, Elsevier, vol. 201(C).
    11. Muhammad Shafiullah & Vassilios G. Papavassiliou & Muhammad Shahbaz, 2021. "Is There an Extended Education-Based Environmental Kuznets Curve? An Analysis of U.S. States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 795-819, December.
    12. Schneider, Nicolas & Strielkowski, Wadim, 2023. "Modelling the unit root properties of electricity data—A general note on time-domain applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    13. Badi H. Baltagi & Chihwa Kao & Fa Wang, 2017. "Asymptotic power of the sphericity test under weak and strong factors in a fixed effects panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 853-882, October.
    14. Badi H. Baltagi & Chihwa Kao & Bin Peng, 2016. "Testing Cross-Sectional Correlation in Large Panel Data Models with Serial Correlation," Econometrics, MDPI, vol. 4(4), pages 1-24, November.
    15. Michael Appiah & Bright Akwasi Gyamfi & Tomiwa Sunday Adebayo & Festus Victor Bekun, 2023. "Do financial development, foreign direct investment, and economic growth enhance industrial development? Fresh evidence from Sub-Sahara African countries," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 22(2), pages 203-227, May.
    16. Halunga, Andreea G. & Orme, Chris D. & Yamagata, Takashi, 2017. "A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 198(2), pages 209-230.
    17. Paulo M.M. Rodrigues & Matei Demetrescu, 2022. "Cross-Sectional Error Dependence in Panel Quantile Regressions," Working Papers w202213, Banco de Portugal, Economics and Research Department.
    18. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
    19. Zhaoyuan Li & Jianfeng Yao, 2021. "Extension of the Lagrange multiplier test for error cross-section independence to large panels with non normal errors," Papers 2103.06075, arXiv.org.
    20. Xuehu Zhu & Jun Lu & Jun Zhang & Lixing Zhu, 2021. "Testing for conditional independence: A groupwise dimension reduction‐based adaptive‐to‐model approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 549-576, June.

    More about this item

    Keywords

    Asymptotic independence; Fixed effects panel data regression models; High dimensionality; Max-sum tests; Rank-based tests;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:238:y:2024:i:1:s0304407623002944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.