Inference of Grouped Time-Varying Network Vector Autoregression Models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wei Biao Wu & Zhibiao Zhao, 2007. "Inference of trends in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 391-410, June.
- Gao, Jiti & Gijbels, Irène, 2008.
"Bandwidth Selection in Nonparametric Kernel Testing,"
Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
- Jiti Gao & Irene Gijbels, 2009. "Bandwidth Selection in Nonparametric Kernel Testing," School of Economics and Public Policy Working Papers 2009-01, University of Adelaide, School of Economics and Public Policy.
- Stéphane Bonhomme & Elena Manresa, 2015.
"Grouped Patterns of Heterogeneity in Panel Data,"
Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
- Stéphane Bonhomme & Elena Manresa, 2012. "Grouped Patterns of Heterogeneity in Panel Data," Working Papers wp2012_1208, CEMFI.
- Jushan Bai & Kunpeng Li & Lina Lu, 2016.
"Estimation and Inference of FAVAR Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 620-641, October.
- Bai, Jushan & Li, Kunpeng & Lu, Lina, 2014. "Estimation and inference of FAVAR models," MPRA Paper 60960, University Library of Munich, Germany.
- Li, Qi, 1999. "Consistent model specification tests for time series econometric models," Journal of Econometrics, Elsevier, vol. 92(1), pages 101-147, September.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016.
"Identifying Latent Structures in Panel Data,"
Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
- Liangjun Su & Zhentao Shi & Peter C.B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Cowles Foundation Discussion Papers 1965, Cowles Foundation for Research in Economics, Yale University.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Working Papers 07-2014, Singapore Management University, School of Economics.
- Guenter W. Beck & Kirstin Hubrich & Massimiliano Marcellino, 2016.
"On the Importance of Sectoral and Regional Shocks for Price‐Setting,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1234-1253, November.
- Hubrich, Kirstin & Marcellino, Massimiliano & Beck, Günter, 2011. "On the importance of sectoral and regional shocks for price-setting," CEPR Discussion Papers 8357, C.E.P.R. Discussion Papers.
- Beck, Guenter W. & Hubrich, Kirstin & Marcellino, Massimiliano, 2012. "On the importance of sectoral and regional shocks for price setting," IMFS Working Paper Series 63, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Hubrich, Kirstin & Marcellino, Massimiliano & Beck, Günter W., 2011. "On the importance of sectoral and regional shocks for price-setting," Working Paper Series 1334, European Central Bank.
- Jia Chen, 2019.
"Estimating latent group structure in time-varying coefficient panel data models,"
The Econometrics Journal, Royal Economic Society, vol. 22(3), pages 223-240.
- Jia Chen, 2018. "Estimating Latent Group Structure in Time-Varying Coefficient Panel Data Models," Discussion Papers 18/15, Department of Economics, University of York.
- Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
- Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
- Chen, J. & Li, D. & Li, Y. & Linton, O. B., 2022.
"Estimating Time-Varying Networks for High-Dimensional Time Series,"
Janeway Institute Working Papers
2231, Faculty of Economics, University of Cambridge.
- Jia Chen & Degui Li & Yuning Li & Oliver Linton, 2023. "Estimating Time-Varying Networks for High-Dimensional Time Series," Papers 2302.02476, arXiv.org.
- Chen, J. & Li, D. & Li, Y. & Linton, O. B., 2022. "Estimating Time-Varying Networks for High-Dimensional Time Series," Cambridge Working Papers in Economics 2273, Faculty of Economics, University of Cambridge.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Gao, Jiti & King, Maxwell & Lu, Zudi & Tjøstheim, Dag, 2009.
"Nonparametric Specification Testing For Nonlinear Time Series With Nonstationarity,"
Econometric Theory, Cambridge University Press, vol. 25(6), pages 1869-1892, December.
- Jiti Gao & Maxwell King & Zudi Lu & Dag Tjøstheim, 2009. "Nonparametric Specification Testing for Nonlinear Time Series with Nonstationarity," School of Economics and Public Policy Working Papers 2009-03, University of Adelaide, School of Economics and Public Policy.
- Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
- Li, Q. & Wang, Suojin, 1998. "A simple consistent bootstrap test for a parametric regression function," Journal of Econometrics, Elsevier, vol. 87(1), pages 145-165, August.
- Liangjun Su & Xia Wang & Sainan Jin, 2019. "Sieve Estimation of Time-Varying Panel Data Models With Latent Structures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 334-349, April.
- Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sun, Yiguo & Malikov, Emir, 2018.
"Estimation and inference in functional-coefficient spatial autoregressive panel data models with fixed effects,"
Journal of Econometrics, Elsevier, vol. 203(2), pages 359-378.
- Sun, Yiguo & Malikov, Emir, 2017. "Estimation and Inference in Functional-Coefficient Spatial Autoregressive Panel Data Models with Fixed Effects," MPRA Paper 83671, University Library of Munich, Germany.
- Zhou Zhou & Wei Biao Wu, 2010. "Simultaneous inference of linear models with time varying coefficients," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 513-531, September.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Kilian,Lutz & Lütkepohl,Helmut, 2018.
"Structural Vector Autoregressive Analysis,"
Cambridge Books,
Cambridge University Press, number 9781107196575, January.
- Kilian,Lutz & Lütkepohl,Helmut, 2017. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781316647332, January.
- Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
- Y. Xia, 1998. "Bias‐corrected confidence bands in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 797-811.
- Vogt, Michael & Linton, Oliver, 2020.
"Multiscale clustering of nonparametric regression curves,"
Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
- Michael Vogt & Oliver Linton, 2018. "Multiscale clustering of nonparametric regression curves," CeMMAP working papers CWP08/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Guðmundsson, Guðmundur Stefán & Brownlees, Christian, 2021. "Detecting groups in large vector autoregressions," Journal of Econometrics, Elsevier, vol. 225(1), pages 2-26.
- Sun, Yiguo, 2016. "Functional-coefficient spatial autoregressive models with nonparametric spatial weights," Journal of Econometrics, Elsevier, vol. 195(1), pages 134-153.
- Feng, Guohua & Gao, Jiti & Peng, Bin, 2022.
"An integrated panel data approach to modelling economic growth,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
- Guohua Feng & Jiti Gao & Bin Peng, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Papers 1903.07948, arXiv.org.
- Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
- Ting Zhang & Wei Biao Wu, 2011. "Testing parametric assumptions of trends of a nonstationary time series," Biometrika, Biometrika Trust, vol. 98(3), pages 599-614.
- Song, Song & Bickel, Peter J., 2011.
"Large vector auto regressions,"
SFB 649 Discussion Papers
2011-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Song Song & Peter J. Bickel, 2011. "Large Vector Auto Regressions," Papers 1106.3915, arXiv.org.
- Dani Rodrik, 2013. "Unconditional Convergence in Manufacturing," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(1), pages 165-204.
- Likai Chen & Wei Biao Wu, 2019. "Testing for Trends in High-Dimensional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 869-881, April.
- Ting Zhang, 2013. "Clustering High-Dimensional Time Series Based on Parallelism," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 577-588, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Degui Li & Bin Peng & Songqiao Tang & Weibiao Wu, 2023. "Estimation of Grouped Time-Varying Network Vector Autoregression Models," Papers 2303.10117, arXiv.org, revised Mar 2024.
- Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024.
"Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
- Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2023. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Papers 2303.13218, arXiv.org.
- Su, Liangjun & Wang, Wuyi & Xu, Xingbai, 2023. "Identifying latent group structures in spatial dynamic panels," Journal of Econometrics, Elsevier, vol. 235(2), pages 1955-1980.
- Miao, Ke & Su, Liangjun & Wang, Wendun, 2020.
"Panel threshold regressions with latent group structures,"
Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
- Ke, Miao & Su, Liangjun & Wang, Wendun, 2019. "Panel threshold regressions with latent group structures," Economics and Statistics Working Papers 13-2019, Singapore Management University, School of Economics.
- Yohei Yamamoto & Naoko Hara, 2022.
"Identifying factor‐augmented vector autoregression models via changes in shock variances,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
- YAMAMOTO, Yohei & 山本, 庸平, 2018. "Identifying Factor-Augmented Vector Autoregression Models via Changes in Shock Variances," Discussion paper series HIAS-E-72, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
- Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
- Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
- Cubadda, Gianluca & Guardabascio, Barbara, 2019.
"Representation, estimation and forecasting of the multivariate index-augmented autoregressive model,"
International Journal of Forecasting, Elsevier, vol. 35(1), pages 67-79.
- Gianluca Cubadda & Barbara Guardabascio, 2017. "Representation, Estimation and Forecasting of the Multivariate Index-Augmented Autoregressive Model," CEIS Research Paper 397, Tor Vergata University, CEIS, revised 13 Jul 2018.
- Wang, Bin & Zheng, Xu, 2022. "Testing for the presence of jump components in jump diffusion models," Journal of Econometrics, Elsevier, vol. 230(2), pages 483-509.
- Gianluca Cubadda & Alain Hecq, 2022.
"Dimension Reduction for High‐Dimensional Vector Autoregressive Models,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
- Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
- Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High Dimensional Vector Autoregressive Models," CEIS Research Paper 534, Tor Vergata University, CEIS, revised 24 Mar 2022.
- Oh, Dong Hwan & Patton, Andrew J., 2023. "Dynamic factor copula models with estimated cluster assignments," Journal of Econometrics, Elsevier, vol. 237(2).
- Malikov, Emir & Sun, Yiguo, 2017.
"Semiparametric estimation and testing of smooth coefficient spatial autoregressive models,"
Journal of Econometrics, Elsevier, vol. 199(1), pages 12-34.
- Malikov, Emir & Sun, Yiguo, 2017. "Semiparametric Estimation and Testing of Smooth Coefficient Spatial Autoregressive Models," MPRA Paper 77253, University Library of Munich, Germany.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2024.
"Local projection inference in high dimensions,"
The Econometrics Journal, Royal Economic Society, vol. 27(3), pages 323-342.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2022. "Local Projection Inference in High Dimensions," Papers 2209.03218, arXiv.org, revised Apr 2024.
- Huang, Danyang & Hu, Wei & Jing, Bingyi & Zhang, Bo, 2023. "Grouped spatial autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
- Dong Hwan Oh & Andrew J. Patton, 2021. "Dynamic Factor Copula Models with Estimated Cluster Assignments," Finance and Economics Discussion Series 2021-029r1, Board of Governors of the Federal Reserve System (U.S.), revised 06 May 2022.
- Jia Chen, 2019.
"Estimating latent group structure in time-varying coefficient panel data models,"
The Econometrics Journal, Royal Economic Society, vol. 22(3), pages 223-240.
- Jia Chen, 2018. "Estimating Latent Group Structure in Time-Varying Coefficient Panel Data Models," Discussion Papers 18/15, Department of Economics, University of York.
- Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
More about this item
Keywords
cluster analysis; information criterion; latent groups; local linear estimator; network VAR; time-varying coefficients;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2023-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.