IDEAS home Printed from https://ideas.repec.org/p/bno/worpap/2017_11.html
   My bibliography  Save this paper

Bayesian analysis of boundary and near-boundary evidence in econometric models with reduced rank

Author

Listed:
  • Nalan Basturk

    (Maastricht University & RCEA)

  • Lennart Hoogerheide

    (Vrije Universiteit Amsterdam & Tinbergen Institute)

  • Herman K. van Dijk

    (Erasmus University Rotterdam, Norges Bank (Central Bank of Norway) & Tinbergen Institute & RCEA)

Abstract

Weak empirical evidence near and at the boundary of the parameter region is a predominant feature in econometric models. Examples are macroeconometric models with weak information on the number of stable relations, microeconometric models measuring connectivity between variables with weak instruments, financial econometric models like the random walk with weak evidence on the efficient market hypothesis and factor models for investment policies with weak information on the number of unobserved factors. A Bayesian analysis is presented of the common issue in these models, which refers to the topic of a reduced rank. Reduced rank is a boundary issue and its effect on the shape of the posteriors of the equation system parameters with a reduced rank is explored systematically. These shapes refer to ridges due to weak identification, fat tails and multimodality. Discussing several alternative routes to construct regularization priors, we show that flat posterior surfaces are integrable even though the marginal posterior tends to infinity if the parameters tend to the values corresponding to local non-identification. We introduce a lasso type shrinkage prior combined with orthogonal normalization which restricts the range of the parameters in a plausible way. This can be combined with other shrinkage, smoothness and data based priors using training samples or dummy observations. Using such classes of priors, it is shown how conditional probabilities of evidence near and at the boundary can be evaluated effectively. These results allow for Bayesian inference using mixtures of posteriors under the boundary state and the near-boundary state. The approach is applied to the estimation of education-income effect in all states of the US economy. The empirical results indicate that there exist substantial differences of this effect between almost all states. This may affect important national and state-wise policies on required length of education. The use of the proposed approach may, in general, lead to more accurate forecasting and decision analysis in other problems in economics, finance and marketing.

Suggested Citation

  • Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2017. "Bayesian analysis of boundary and near-boundary evidence in econometric models with reduced rank," Working Paper 2017/11, Norges Bank.
  • Handle: RePEc:bno:worpap:2017_11
    as

    Download full text from publisher

    File URL: http://www.norges-bank.no/en/Published/Papers/Working-Papers/2017/112017/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011. "Bayesian inference in a time varying cointegration model," Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
    2. repec:onb:oenbwp:y::i:56:b:1 is not listed on IDEAS
    3. Kleibergen, Frank & van Dijk, Herman K., 1998. "Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures," Econometric Theory, Cambridge University Press, vol. 14(6), pages 701-743, December.
    4. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    5. Edward P. Herbst & Frank Schorfheide, 2016. "Bayesian Estimation of DSGE Models," Economics Books, Princeton University Press, edition 1, number 10612.
    6. Anonymous, 1956. "Introduction to the Symposium," American Political Science Review, Cambridge University Press, vol. 50(2), pages 488-488, June.
    7. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, September.
    8. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    9. Zellner, Arnold, 1988. "Bayesian analysis in econometrics," Journal of Econometrics, Elsevier, vol. 37(1), pages 27-50, January.
    10. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    11. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    12. Arnold Zellner & Tomohiro Ando & Nalan Baştük & Lennart Hoogerheide & Herman K. van Dijk, 2014. "Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 3-35, June.
    13. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Hashem Pesaran & Ron P. Smith, 2017. "Posterior Means and Precisions of the Coefficients in Linear Models with Highly Collinear Regressors," CESifo Working Paper Series 6785, CESifo.
    2. Pesaran, M. Hashem & Smith, Ron P., 2019. "A Bayesian analysis of linear regression models with highly collinear regressors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 1-21.
    3. van Dijk Herman K., 2024. "Challenges and Opportunities for Twenty First Century Bayesian Econometricians: A Personal View," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 155-176, April.
    4. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    5. Christian Aßmann & Jens Boysen-Hogrefe & Markus Pape, 2024. "Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 577-609, September.
    6. Casarin Roberto & Peruzzi Antonio, 2024. "A Dynamic Latent-Space Model for Asset Clustering," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 379-402, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney, 2012. "Bayesian model averaging in the instrumental variable regression model," Journal of Econometrics, Elsevier, vol. 171(2), pages 237-250.
    2. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    3. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    4. Lips Johannes, 2017. "Do They Still Matter? – Impact of Fossil Fuels on Electricity Prices in the Light of Increased Renewable Generation," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-30, July.
    5. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    6. Villani, Mattias, 2006. "Bayesian point estimation of the cointegration space," Journal of Econometrics, Elsevier, vol. 134(2), pages 645-664, October.
    7. Chew Lian Chua & Sarantis Tsiaplias, 2014. "A Bayesian Approach to Modelling Bivariate Time-Varying Cointegration and Cointegrating Rank," Melbourne Institute Working Paper Series wp2014n27, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    8. Helmut Luetkepohl, 2007. "Econometric Analysis with Vector Autoregressive Models," Economics Working Papers ECO2007/11, European University Institute.
    9. Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004. "Bayesian Approaches to Cointegration," Discussion Papers in Economics 04/27, Division of Economics, School of Business, University of Leicester.
    10. Villani, Mattias, 2003. "Bayes Estimators of the Cointegration Space," Working Paper Series 150, Sveriges Riksbank (Central Bank of Sweden).
    11. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    12. Chuanming Gao & Kajal Lahiri, 2019. "A Comparison of Some Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Econometrics, MDPI, vol. 7(3), pages 1-28, July.
    13. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2013. "Historical Developments in Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 13-191/III, Tinbergen Institute.
    14. Anna Pajor & Justyna Wróblewska & Łukasz Kwiatkowski & Jacek Osiewalski, 2024. "Hybrid SV‐GARCH, t‐GARCH and Markov‐switching covariance structures in VEC models—Which is better from a predictive perspective?," International Statistical Review, International Statistical Institute, vol. 92(1), pages 62-86, April.
    15. Xiaojie Xu, 2015. "Cointegration among regional corn cash prices," Economics Bulletin, AccessEcon, vol. 35(4), pages 2581-2594.
    16. Jakšić Saša, 2022. "Modelling Determinants of Inflation in CESEE Countries: Global Vector Autoregressive Approach," Review of Economic Perspectives, Sciendo, vol. 22(2), pages 137-169, June.
    17. Candelon, Bertrand & Lieb, Lenard, 2013. "Fiscal policy in good and bad times," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2679-2694.
    18. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    19. Jochmann Markus & Koop Gary, 2015. "Regime-switching cointegration," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
    20. Peter Rowland & Hugo OLiveros C., 2003. "Colombian Purchasing Power Parity Analysed Using a Framework of Multivariate Cointegration," Borradores de Economia 252, Banco de la Republica de Colombia.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bno:worpap:2017_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nbgovno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.