IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.19287.html
   My bibliography  Save this paper

Factors in Fashion: Factor Analysis towards the Mode

Author

Listed:
  • Zhe Sun
  • Yundong Tu

Abstract

The modal factor model represents a new factor model for dimension reduction in high dimensional panel data. Unlike the approximate factor model that targets for the mean factors, it captures factors that influence the conditional mode of the distribution of the observables. Statistical inference is developed with the aid of mode estimation, where the modal factors and the loadings are estimated through maximizing a kernel-type objective function. An easy-to-implement alternating maximization algorithm is designed to obtain the estimators numerically. Two model selection criteria are further proposed to determine the number of factors. The asymptotic properties of the proposed estimators are established under some regularity conditions. Simulations demonstrate the nice finite sample performance of our proposed estimators, even in the presence of heavy-tailed and asymmetric idiosyncratic error distributions. Finally, the application to inflation forecasting illustrates the practical merits of modal factors.

Suggested Citation

  • Zhe Sun & Yundong Tu, 2024. "Factors in Fashion: Factor Analysis towards the Mode," Papers 2409.19287, arXiv.org.
  • Handle: RePEc:arx:papers:2409.19287
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.19287
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.19287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.