Global stock markets risk contagion: Evidence from multilayer connectedness networks in the frequency domain
Author
Abstract
Suggested Citation
DOI: 10.1016/j.najef.2023.101973
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xuewei Zhou & Zisheng Ouyang & Rangan Gupta & Qiang Ji, 2024. "Time-Varying Multilayer Networks Analysis of Frequency Connectedness in Commodity Futures Markets," Working Papers 202422, University of Pretoria, Department of Economics.
- Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
- Kaihao Liang & Shuliang Li & Wenfeng Zhang & Chaolong Zhang, 2024. "Research on Stock Market Risk Contagion of Major Debt Crises Based on Complex Network Models—The Case of Evergrande in China," Mathematics, MDPI, vol. 12(11), pages 1-13, May.
- Miklesh Yadav & Sabia Tabassum & Anas Ali AlQudah & Manaf Al-Okaily & Myriam Aloulou & Nikola Stakic & Marcos Santos, 2024. "Does COVID-19 Outbreak Push Saudi Crude Oil to Connect with Selected GCC Equity Market? Insight of Time Varying Linkage," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1047-1070, March.
- Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
- U, Tony Sio-Chong & Lin, Yongjia & Wang, Yizhi, 2024. "The impact of the Russia–Ukraine war on volatility spillovers," International Review of Financial Analysis, Elsevier, vol. 93(C).
- Abdou, Hussein A. & Elamer, Ahmed A. & Abedin, Mohammad Zoynul & Ibrahim, Bassam A., 2024. "The impact of oil and global markets on Saudi stock market predictability: A machine learning approach," Energy Economics, Elsevier, vol. 132(C).
More about this item
Keywords
Financial risk; Frequency domain; Multilayer connectedness networks; Global stock markets;All these keywords.
JEL classification:
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000967. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.