IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v215y2020i2p574-590.html
   My bibliography  Save this article

Identification and estimation in panel models with overspecified number of groups

Author

Listed:
  • Liu, Ruiqi
  • Shang, Zuofeng
  • Zhang, Yonghui
  • Zhou, Qiankun

Abstract

We propose a simple and fast approach to identify and estimate the unknown group structure in panel models by adapting the M-estimation method. We consider both linear and nonlinear panel models where the regression coefficients are heterogeneous across groups but homogeneous within a group and the group membership is unknown to researchers. The main result of the paper is that under certain assumptions, our approach is able to provide uniformly consistent estimation as long as the number of groups used in estimation is not smaller than the true number of groups. We also show that, asymptotically, our method may partition some true groups into further subgroups, but cannot mix units from different groups. When the true number of groups is used in estimation, all units can be categorized correctly with probability approaching one, and we establish the limiting distribution for the estimators of the group parameters. In addition, we provide an information criterion to select the number of groups, and establish the consistency of the selection criterion under some mild conditions. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed method. The findings in the simulation confirm our theoretical results in the paper. Applications to two real datasets also highlight the necessity to consider both individual heterogeneity and group heterogeneity in the model.

Suggested Citation

  • Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
  • Handle: RePEc:eee:econom:v:215:y:2020:i:2:p:574-590
    DOI: 10.1016/j.jeconom.2019.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407619302118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    2. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    3. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    4. Vasilis Sarafidis & Neville Weber, 2015. "A Partially Heterogeneous Framework for Analyzing Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 274-296, April.
    5. Lee, Yoonseok & Phillips, Peter C.B., 2015. "Model selection in the presence of incidental parameters," Journal of Econometrics, Elsevier, vol. 188(2), pages 474-489.
    6. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    7. Su, Liangjun & Chen, Qihui, 2013. "Testing Homogeneity In Panel Data Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1079-1135, December.
    8. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    9. Carro, Jesus M., 2007. "Estimating dynamic panel data discrete choice models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 503-528, October.
    10. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    11. Lee, Kevin & Pesaran, M Hashem & Smith, Ron, 1997. "Growth and Convergence in Multi-country Empirical Stochastic Solow Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(4), pages 357-392, July-Aug..
    12. Hahn, Jinyong & Moon, Hyungsik Roger, 2010. "Panel Data Models With Finite Number Of Multiple Equilibria," Econometric Theory, Cambridge University Press, vol. 26(3), pages 863-881, June.
    13. Xun Lu & Liangjun Su, 2017. "Determining the number of groups in latent panel structures with an application to income and democracy," Quantitative Economics, Econometric Society, vol. 8(3), pages 729-760, November.
    14. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    15. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C., 2016. "A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers," Journal of Econometrics, Elsevier, vol. 190(2), pages 289-300.
    16. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
    17. Bester, C. Alan & Hansen, Christian B., 2016. "Grouped effects estimators in fixed effects models," Journal of Econometrics, Elsevier, vol. 190(1), pages 197-208.
    18. Dean R. Hyslop, 1999. "State Dependence, Serial Correlation and Heterogeneity in Intertemporal Labor Force Participation of Married Women," Econometrica, Econometric Society, vol. 67(6), pages 1255-1294, November.
    19. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    20. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 42-55, August.
    21. Tony Lancaster, 2002. "Orthogonal Parameters and Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 647-666.
    22. Liangjun Su & Xia Wang & Sainan Jin, 2019. "Sieve Estimation of Time-Varying Panel Data Models With Latent Structures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 334-349, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    2. Yanbo Liu & Peter C. B. Phillips & Jun Yu, 2023. "A Panel Clustering Approach To Analyzing Bubble Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1347-1395, November.
    3. Leng, Xuan & Chen, Heng & Wang, Wendun, 2023. "Multi-dimensional latent group structures with heterogeneous distributions," Journal of Econometrics, Elsevier, vol. 233(1), pages 1-21.
    4. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    5. Max Cytrynbaum, 2020. "Blocked Clusterwise Regression," Papers 2001.11130, arXiv.org.
    6. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    7. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    8. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    9. Tadao Hoshino, 2020. "A Pairwise Strategic Network Formation Model with Group Heterogeneity: With an Application to International Travel," Papers 2012.14886, arXiv.org, revised Feb 2021.
    10. Tsubasa Ito & Shonosuke Sugasawa, 2023. "Grouped generalized estimating equations for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 79(3), pages 1868-1879, September.
    11. Langevin, R.;, 2024. "Consistent Estimation of Finite Mixtures: An Application to Latent Group Panel Structures," Health, Econometrics and Data Group (HEDG) Working Papers 24/16, HEDG, c/o Department of Economics, University of York.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    2. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
    3. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    4. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    5. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
    7. Claudia Pigini & Alessandro Pionati & Francesco Valentini, 2023. "Specification testing with grouped fixed effects," Papers 2310.01950, arXiv.org.
    8. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    9. Su, Liangjun & Wang, Wuyi & Xu, Xingbai, 2023. "Identifying latent group structures in spatial dynamic panels," Journal of Econometrics, Elsevier, vol. 235(2), pages 1955-1980.
    10. Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
    11. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    12. Huang, Wenxin & Jin, Sainan & Phillips, Peter C.B. & Su, Liangjun, 2021. "Nonstationary panel models with latent group structures and cross-section dependence," Journal of Econometrics, Elsevier, vol. 221(1), pages 198-222.
    13. Ivan Fernandez-Val & Martin Weidner, 2013. "Individual and time effects in nonlinear panel models with large N, T," CeMMAP working papers 60/13, Institute for Fiscal Studies.
    14. Fernández-Val, Iván & Weidner, Martin, 2016. "Individual and time effects in nonlinear panel models with large N, T," Journal of Econometrics, Elsevier, vol. 192(1), pages 291-312.
    15. Jorge A. Rivero, 2023. "Unobserved Grouped Heteroskedasticity and Fixed Effects," Papers 2310.14068, arXiv.org, revised Oct 2023.
    16. Boyuan Zhang, 2022. "Incorporating Prior Knowledge of Latent Group Structure in Panel Data Models," Papers 2211.16714, arXiv.org, revised Oct 2023.
    17. Ivan Fernandez-Val & Martin Weidner, 2014. "Individual and time effects in nonlinear panel models with large N , T," CeMMAP working papers 32/14, Institute for Fiscal Studies.
    18. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
    19. Katerina Chrysikou & George Kapetanios, 2024. "Heterogeneous Grouping Structures in Panel Data," Papers 2407.19509, arXiv.org.
    20. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.

    More about this item

    Keywords

    Classification; Fixed effects; Group structure; K-means algorithm; Linear and nonlinear panel; M-estimation;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:215:y:2020:i:2:p:574-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.