IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.06883.html
   My bibliography  Save this paper

Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors

Author

Listed:
  • Diego Fresoli
  • Pilar Poncela
  • Esther Ruiz

Abstract

In this paper, we propose a computationally simple estimator of the asymptotic covariance matrix of the Principal Components (PC) factors valid in the presence of cross-correlated idiosyncratic components. The proposed estimator of the asymptotic Mean Square Error (MSE) of PC factors is based on adaptive thresholding the sample covariances of the id iosyncratic residuals with the threshold based on their individual variances. We compare the nite sample performance of condence regions for the PC factors obtained using the proposed asymptotic MSE with those of available extant asymptotic and bootstrap regions and show that the former beats all alternative procedures for a wide variety of idiosyncratic cross-correlation structures.

Suggested Citation

  • Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
  • Handle: RePEc:arx:papers:2407.06883
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.06883
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    2. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    3. Yumou Qiu & Janaka S. S. Liyanage, 2019. "Threshold selection for covariance estimation," Biometrics, The International Biometric Society, vol. 75(3), pages 895-905, September.
    4. Min Seong Kim, 2022. "Robust Inference for Diffusion-Index Forecasts With Cross-Sectionally Dependent Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1153-1167, June.
    5. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2016. "The World Is Not Enough! Small Open Economies and Regional Dependence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 118(1), pages 168-195, January.
    6. Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017. "Bootstrap Prediction Intervals for Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
    7. Diebold, Francis X. & Göbel, Maximilian & Goulet Coulombe, Philippe & Rudebusch, Glenn D. & Zhang, Boyuan, 2021. "Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1509-1519.
    8. Matteo Barigozzi & Matteo Luciani, 2023. "Measuring the Output Gap using Large Datasets," The Review of Economics and Statistics, MIT Press, vol. 105(6), pages 1500-1514, November.
    9. Esther Ruiz & Pilar Poncela, 2022. "Factor Extraction in Dynamic Factor Models: Kalman Filter Versus Principal Components," Foundations and Trends(R) in Econometrics, now publishers, vol. 12(2), pages 121-231, November.
    10. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    11. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    12. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    13. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    14. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    15. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    16. Bai, Jushan, 2004. "Estimating cross-section common stochastic trends in nonstationary panel data," Journal of Econometrics, Elsevier, vol. 122(1), pages 137-183, September.
    17. Politis, Dimitris N., 2011. "Higher-Order Accurate, Positive Semidefinite Estimation Of Large-Sample Covariance And Spectral Density Matrices," Econometric Theory, Cambridge University Press, vol. 27(4), pages 703-744, August.
    18. Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14, pages 1-24, February.
    19. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    20. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    21. Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2022. "Measuring real activity using a weekly economic index," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 667-687, June.
    22. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    23. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    24. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    25. Fresoli, Diego & Poncela, Pilar & Ruiz, Esther, 2023. "Ignoring cross-correlated idiosyncratic components when extracting factors in dynamic factor models," Economics Letters, Elsevier, vol. 230(C).
    26. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    2. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    3. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    4. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    5. Fresoli, Diego & Poncela, Pilar & Ruiz, Esther, 2023. "Ignoring cross-correlated idiosyncratic components when extracting factors in dynamic factor models," Economics Letters, Elsevier, vol. 230(C).
    6. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    7. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    8. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    9. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    10. Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak Factor Models and the Analysis of High-Dimensional Time Series," Working Papers ECARES 2024-14, ULB -- Universite Libre de Bruxelles.
    11. González-Rivera, Gloria & Maldonado, Javier & Ruiz, Esther, 2019. "Growth in stress," International Journal of Forecasting, Elsevier, vol. 35(3), pages 948-966.
    12. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    13. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    14. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    15. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    16. Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023. "Factor-based imputation of missing values and covariances in panel data of large dimensions," Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
    17. Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
    18. Ergemen, Yunus Emre & Rodríguez-Caballero, C. Vladimir, 2023. "Estimation of a dynamic multi-level factor model with possible long-range dependence," International Journal of Forecasting, Elsevier, vol. 39(1), pages 405-430.
    19. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    20. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Jun 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.06883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.