IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v82y2017i2d10.1007_s11336-016-9530-0.html
   My bibliography  Save this article

Bayesian Plackett–Luce Mixture Models for Partially Ranked Data

Author

Listed:
  • Cristina Mollica

    (Sapienza Università di Roma)

  • Luca Tardella

    (Sapienza Università di Roma)

Abstract

The elicitation of an ordinal judgment on multiple alternatives is often required in many psychological and behavioral experiments to investigate preference/choice orientation of a specific population. The Plackett–Luce model is one of the most popular and frequently applied parametric distributions to analyze rankings of a finite set of items. The present work introduces a Bayesian finite mixture of Plackett–Luce models to account for unobserved sample heterogeneity of partially ranked data. We describe an efficient way to incorporate the latent group structure in the data augmentation approach and the derivation of existing maximum likelihood procedures as special instances of the proposed Bayesian method. Inference can be conducted with the combination of the Expectation-Maximization algorithm for maximum a posteriori estimation and the Gibbs sampling iterative procedure. We additionally investigate several Bayesian criteria for selecting the optimal mixture configuration and describe diagnostic tools for assessing the fitness of ranking distributions conditionally and unconditionally on the number of ranked items. The utility of the novel Bayesian parametric Plackett–Luce mixture for characterizing sample heterogeneity is illustrated with several applications to simulated and real preference ranked data. We compare our method with the frequentist approach and a Bayesian nonparametric mixture model both assuming the Plackett–Luce model as a mixture component. Our analysis on real datasets reveals the importance of an accurate diagnostic check for an appropriate in-depth understanding of the heterogenous nature of the partial ranking data.

Suggested Citation

  • Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.
  • Handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-016-9530-0
    DOI: 10.1007/s11336-016-9530-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-016-9530-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-016-9530-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilles Celeux & Gilda Soromenho, 1996. "An entropy criterion for assessing the number of clusters in a mixture model," Journal of Classification, Springer;The Classification Society, vol. 13(2), pages 195-212, September.
    2. repec:dau:papers:123456789/6069 is not listed on IDEAS
    3. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    4. Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.
    5. Papastamoulis, Panagiotis, 2016. "label.switching: An R Package for Dealing with the Label Switching Problem in MCMC Outputs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(c01).
    6. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    7. Hatzinger, Reinhold & Dittrich, Regina, 2012. "prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i10).
    8. Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third‐level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    2. Heather L. Turner & Jacob Etten & David Firth & Ioannis Kosmidis, 2020. "Modelling rankings in R: the PlackettLuce package," Computational Statistics, Springer, vol. 35(3), pages 1027-1057, September.
    3. Cristina Mollica & Luca Tardella, 2021. "Bayesian analysis of ranking data with the Extended Plackett–Luce model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 175-194, March.
    4. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Mollica & Luca Tardella, 2021. "Bayesian analysis of ranking data with the Extended Plackett–Luce model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 175-194, March.
    2. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    3. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    4. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "A Variant of AIC Using Bayesian Marginal Likelihood," CIRJE F-Series CIRJE-F-971, CIRJE, Faculty of Economics, University of Tokyo.
    5. Stefano Grassi & Francesco Ravazzolo & Joaquin Vespignani & Giorgio Vocalelli, 2023. "Global Money Supply and Energy and Non-Energy Commodity Prices: A MS-TV-VAR Approach," CAMA Working Papers 2023-13, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Heather L. Turner & Jacob Etten & David Firth & Ioannis Kosmidis, 2020. "Modelling rankings in R: the PlackettLuce package," Computational Statistics, Springer, vol. 35(3), pages 1027-1057, September.
    7. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    8. Wang, Yixin & So, Mike K.P., 2016. "A Bayesian hierarchical model for spatial extremes with multiple durations," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 39-56.
    9. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    10. Filidor Vilca & Caio L. N. Azevedo & N. Balakrishnan, 2017. "Bayesian inference for sinh-normal/independent nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2052-2074, August.
    11. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2018. "A Variant of AIC Based on the Bayesian Marginal Likelihood," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 60-84, May.
    12. Ruth Salway & Simon J. Sebire & Byron Tibbitts & Emily Sanderson & Rebecca Kandiyali & Kate Willis & Stephanie J. MacNeill & Russell Jago, 2020. "Physical Activity and Psychosocial Characteristics of the Peer Supporters in the PLAN-A Study—A Latent Class Analysis," IJERPH, MDPI, vol. 17(21), pages 1-15, October.
    13. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.
    14. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    15. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    16. So, Mike K.P. & Chan, Raymond K.S., 2014. "Bayesian analysis of tail asymmetry based on a threshold extreme value model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 568-587.
    17. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    18. Saverio Ranciati & Giuliano Galimberti & Gabriele Soffritti, 2019. "Bayesian variable selection in linear regression models with non-normal errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 323-358, June.
    19. José L. Gallizo & Jordi Moreno & Manuel Salvador, 2016. "Banking Efficiency in the Enlarged European Union: Financial Crisis and Convergence," International Finance, Wiley Blackwell, vol. 19(1), pages 66-88, April.
    20. Koji Miyawaki, 2013. "Space-varying Coefficient Simultaneous Autoregressive Models for the Structural Analysis of Residential Water Demand," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(4), pages 498-518, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:82:y:2017:i:2:d:10.1007_s11336-016-9530-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.