IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v14y2011i1p1-24.html
   My bibliography  Save this article

Quantile regression models with factor‐augmented predictors and information criterion

Author

Listed:
  • Tomohiro Ando
  • Ruey S. Tsay

Abstract

For situations with a large number of series, N, each with T observations and each containing a certain amount of information for prediction of the variable of interest, we propose a new statistical modelling methodology that first estimates the common factors from a panel of data using principal component analysis and then employs the estimated factors in a standard quantile regression. A crucial step in the model‐building process is the selection of a good model among many possible candidates. Taking into account the effect of estimated regressors, we develop an information‐theoretic criterion. We also investigate the criterion when there is no estimated regressors. Results of Monte Carlo simulations demonstrate that the proposed criterion performs well in a wide range of situations.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 1-24, February.
  • Handle: RePEc:ect:emjrnl:v:14:y:2011:i:1:p:1-24
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1368-423X.2010.00320.x
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:14:y:2011:i:1:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.