IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2015cf971.html
   My bibliography  Save this paper

A Variant of AIC Using Bayesian Marginal Likelihood

Author

Listed:
  • Yuki Kawakubo

    (Graduate School of Economics, The University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

  • Muni S. Srivastava

    (Department of Statistics, University of Toronto)

Abstract

We propose an information criterion which measures the prediction risk of the predictive density based on the Bayesian marginal likelihood from a frequentist point of view. We derive the criteria for selecting variables in linear regression models by putting the prior on the regression coefficients, and discuss the relationship between the proposed criteria and other related ones. There are three advantages of our method. Firstly, this is a compromise between the frequentist and Bayesian standpoint because it evaluates the frequentist's risk of the Bayesian model. Thus it is less in uenced by prior misspeci cation. Secondly, non-informative improper prior can be also used for constructing the criterion. When the uniform prior is assumed on the regression coefficients, the resulting criterion is identical to the residual information criterion (RIC) of Shi and Tsai (2002). Lastly, the criteria have the consistency property for selecting the true model. --

Suggested Citation

  • Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2015. "A Variant of AIC Using Bayesian Marginal Likelihood," CIRJE F-Series CIRJE-F-971, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2015cf971
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2015/2015cf971.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Casella, George & Moreno, Elias, 2006. "Objective Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 157-167, March.
    2. Peide Shi & Chih‐Ling Tsai, 2002. "Regression model selection—a residual likelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 237-252, May.
    3. Florin Vaida & Suzette Blanchard, 2005. "Conditional Akaike information for mixed-effects models," Biometrika, Biometrika Trust, vol. 92(2), pages 351-370, June.
    4. Tomohiro Ando, 2007. "Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models," Biometrika, Biometrika Trust, vol. 94(2), pages 443-458.
    5. Srivastava, Muni S. & Kubokawa, Tatsuya, 2010. "Conditional information criteria for selecting variables in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1970-1980, October.
    6. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuki Kawakubo & Tatsuya Kubokawa & Muni S. Srivastava, 2018. "A Variant of AIC Based on the Bayesian Marginal Likelihood," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 60-84, May.
    2. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    3. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    4. Ward, Eric J., 2008. "A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools," Ecological Modelling, Elsevier, vol. 211(1), pages 1-10.
    5. Jiang, Jiming & Nguyen, Thuan & Rao, J. Sunil, 2009. "A simplified adaptive fence procedure," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 625-629, March.
    6. Kawakubo, Yuki & Kubokawa, Tatsuya, 2014. "Modified conditional AIC in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 44-56.
    7. Eric F. Lock & Nidhi Kohli & Maitreyee Bose, 2018. "Detecting Multiple Random Changepoints in Bayesian Piecewise Growth Mixture Models," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 733-750, September.
    8. Zellner, Arnold & Ando, Tomohiro, 2010. "A direct Monte Carlo approach for Bayesian analysis of the seemingly unrelated regression model," Journal of Econometrics, Elsevier, vol. 159(1), pages 33-45, November.
    9. Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
    10. Yu, Dalei & Yau, Kelvin K.W., 2012. "Conditional Akaike information criterion for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 629-644.
    11. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    12. Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
    13. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    14. Filidor Vilca & Caio L. N. Azevedo & N. Balakrishnan, 2017. "Bayesian inference for sinh-normal/independent nonlinear regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 2052-2074, August.
    15. Qi Chen & Wen Luo & Gregory J. Palardy & Ryan Glaman & Amber McEnturff, 2017. "The Efficacy of Common Fit Indices for Enumerating Classes in Growth Mixture Models When Nested Data Structure Is Ignored," SAGE Open, , vol. 7(1), pages 21582440177, March.
    16. Honghu Liu & Yan Zheng & Jie Shen, 2008. "Goodness-of-fit measures of R2 for repeated measures mixed effect models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1081-1092.
    17. Ando, Tomohiro, 2009. "Bayesian portfolio selection using a multifactor model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 550-566, July.
    18. Patrick Ten Eyck & Joseph E. Cavanaugh, 2018. "An Alternate Approach to Pseudo-Likelihood Model Selection in the Generalized Linear Mixed Modeling Framework," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 98-122, May.
    19. Liang Yulan & Kelemen Arpad, 2016. "Bayesian state space models for dynamic genetic network construction across multiple tissues," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 273-290, August.
    20. Cristina Mollica & Luca Tardella, 2017. "Bayesian Plackett–Luce Mixture Models for Partially Ranked Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 442-458, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2015cf971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.